Processing math: 100%
X
Advanced Search

Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter

Funds: 

Supported by National Natural Science Foundation of China (11220101004), the UCAS Joint Ph.D.

More Information
  • Received Date: January 31, 2019
  • Revised Date: March 26, 2019
  • Accepted Date: March 28, 2019
  • Available Online: October 17, 2022
  • Published Date: April 12, 2019
  • BackgroundThe lead-scintillating fiber electromagnetic calorimeter (ECAL) of the Alpha Magnetic Spectrometer measures the energy of positrons/electrons and separates them from hadrons. The electromagnetic shower shapes from Monte Carlo (MC) simulation and data show disagreement.
    PurposeTuning the MC to make the shower shapes from MC and data agree with each other.
    MethodsThe tuning is based on a 3D electromagnetic shower model.
    ResultsAfter tuning, the electromagnetic shower shapes are well described by MC up to TeV. As a result, the output of ECAL electron/proton separation estimator, ECAL BDT, shows that MC and data are in good agreement. The proton rejection power of the ECAL BDT trained with MC electron samples is improved by a factor of 5 at 800GeV compared to the one trained with data.
  • [1]
    S. Ting, The alpha magnetic spectrometer on the international space station. Nucl. Phys. B Proc. Suppl. 243–244, 12–24 (2013)
    [2]
    S. Agostinelli et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)
    [3]
    J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016)
    [4]
    M. Aguilar et al., First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013)
    [5]
    A. Kounine et al., Precision measurement of 0.5 GeV–3 TeV electrons and positrons using the AMS electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 869, 110–117 (2017)
    [6]
    L. Accardo et al., High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 121101 (2014)
    [7]
    M. Aguilar et al., Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 113, 121102 (2014)
    [8]
    M. Aguilar et al., Precision measurement of the (e++e) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 221102 (2014)
    [9]
    C. Adloff et al., The AMS-02 lead-scintillating fibers electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 714, 147–154 (2013)
    [10]
    Z. Li et al., Correction of PMT position effect for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 37(02), 026201 (2013)
    [11]
    Z. Li et al., Angular reconstruction of a lead scintillating-fiber sandwiched electromagnetic calorimeter. Chin. Phys. C 38(05), 056203 (2014)
    [12]
    C. Zhang et al., Dead cell and side leakage correction for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 40(09), 096204 (2016)
    [13]
    E. Longo, I. Sestili, Monte Carlo calculation of photon-initiated electromagnetic showers in lead glass. Nucl. Instrum. Methods 128, 283–307 (1975)
    [14]
    G. Grindhammer, S. Peters, The parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters (2000). arXiv:hep-ex/0001020
    [15]
    S. Zhang et al., Improvements on the particle identification with dead cell and side leakage corrections for the electromagnetic calorimeter of the Alpha Magnetic Spectrometer. Radiat. Detect. Technol. Methods 2, 33 (2018)
    [16]
    M. Aguilar et al., Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett. 122, 041102 (2019)
  • Related Articles

    [1]Shanglin Li, Cheng Zhang, Zetong Sun, Zhicheng Tang, Fengze Zhang, Meijun Liang, Haotian Yang, Yuhang You, Hao Chen, Hengyi Cai, Zixuan Yan, Ye Tian, Zuhao Li. Improvement in the electron/positron proton separation based on the Electromagnetic Calorimeter of the Alpha Magnetic Spectrometer[J]. Radiation Detection Technology and Methods, 2024, 8(4): 1614-1618. doi: 10.1007/s41605-024-00475-8
    [2]Haisheng Xu, Cai Meng, Yuemei Peng, Saike Tian, Na Wang, Xiaohao Cui, Chongchong Du, Zhe Duan, Yuanyuan Guo, Ping He, Xiyang Huang, Daheng Ji, Hongfei Ji, Yi Jiao, Jingyi Li, Nan Li, Xiaoyu Li, Xiaohan Lu, Pengfei Liang, Weimin Pan, Huamin Qu, Bin Wang, Jiuqing Wang, Yuanyuan Wei, Jinyu Wan, Gang Xu, Fang Yan, Chenghui Yu, Sen Yue, Xiang Zhang, Yaliang Zhao. Equilibrium electron beam parameters of the High Energy Photon Source[J]. Radiation Detection Technology and Methods, 2023, 7(2): 279-287. doi: 10.1007/s41605-022-00374-w
    [3]Binting Zhang, Cuiping Li, Shulin Liu, Baojun Yan, Baoqiang Li, Wenlu Wei, Huaxing Peng. Experimental study of channel electron multiplier[J]. Radiation Detection Technology and Methods, 2023, 7(1): 117-123. doi: 10.1007/s41605-022-00369-7
    [4]Yue Wang, Licheng Zhang, Aera Jung, Dayong Wang, Yong Ban. Simulation study of the performance of quadruple-GEM detectors[J]. Radiation Detection Technology and Methods, 2023, 7(1): 107-116. doi: 10.1007/s41605-022-00361-1
    [5]Wen-Heng Zheng, Jian-Cheng Yang, Peng Li, Da-Yu Yin, Guo-Dong Shen, Jie Li, Li-Ping Yao, Fu-Dong Shi, Wei-Ping Chai, Li-Jun Mao, Wu-yuan Li, Geng Wang, Bo Yang, Cheng Luo, Wen-Wen Ge, Zhong-Shan Li. Design of proton beam collimation system for HIAF-BRing[J]. Radiation Detection Technology and Methods, 2022, 6(4): 519-529. doi: 10.1007/s41605-022-00351-3
    [6]Jikang Fan, Jian Zhang, Haiying Xu, Yong Peng, Xinghua Sang, Qi Zhou, Kehong Wang. Influence of the cathode position on beam current characteristics in the thermionic electron gun[J]. Radiation Detection Technology and Methods, 2022, 6(3): 401-408. doi: 10.1007/s41605-022-00335-3
    [7]Ze-Tong Sun, Jia-Yu Hu, Zhi-Cheng Tang, Cheng Zhang, Feng-Ze Zhang, Shang-Lin Li, Mei-Jun Liang, Zu-Hao Li, Guo-Ming Chen, He-Sheng Chen. On-orbit equalization of the electromagnetic calorimeter of the Alpha Magnetic Spectrometer[J]. Radiation Detection Technology and Methods, 2021, 5(3): 430-433. doi: 10.1007/s41605-021-00267-4
    [8]Wen He, Xianchao Huang, Yingjie Wang, Baotong Feng, Meiling Zhu, Shuangquan Liu, Zhiming Zhang, Long Wei. A preliminary study on 3D position reconstruction of monolithic crystal readout[J]. Radiation Detection Technology and Methods, 2021, 5(1): 102-109. doi: 10.1007/s41605-020-00225-6
    [9]Fei Zhao, Zhi-Cheng Tang, Zu-Hao Li, Cheng Zhang, Ze-Tong Sun, Feng-Ze Zhang, Jia-Yu Hu, Guo-Ming Chen, He-Sheng Chen. Improvement of cosmic-ray proton measurement with the electromagnetic calorimeter of the Alpha Magnetic Spectrometer[J]. Radiation Detection Technology and Methods, 2021, 5(1): 90-94. doi: 10.1007/s41605-020-00222-9
    [10]Masheng Yang, Zeyuan Yu, Jun Cao, Xilei Sun, Boxiang Yu, Guangpeng An. Measurement of proton quenching in a LAB-based liquid scintillator[J]. Radiation Detection Technology and Methods, 2019, 3(1): 3-3. doi: 10.1007/s41605-018-0049-z
  • Xue-Qiang Wang, Zu-Hao Li, Zhi-Cheng Tang, et al. Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter[J]. Radiation Detection Technology and Methods, 2019, 3(3): 34-34. DOI: 10.1007/s41605-019-0113-3
    Citation: Xue-Qiang Wang, Zu-Hao Li, Zhi-Cheng Tang, et al. Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter[J]. Radiation Detection Technology and Methods, 2019, 3(3): 34-34. DOI: 10.1007/s41605-019-0113-3
  • Cited by

    Periodical cited type(1)

    1. Shanglin Li, Cheng Zhang, Zetong Sun, et al. Improvement in the electron/positron proton separation based on the Electromagnetic Calorimeter of the Alpha Magnetic Spectrometer. Radiation Detection Technology and Methods, 2024. DOI:10.1007/s41605-024-00475-8

    Other cited types(0)

Catalog

    Article views (5) PDF downloads (0) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return