X
Advanced Search

Design and simulation of cavity BPM for BEPCII

More Information
  • Received Date: December 20, 2018
  • Revised Date: May 12, 2019
  • Accepted Date: May 13, 2019
  • Available Online: October 17, 2022
  • Published Date: June 02, 2019
  • BackgroundIn the linac of Beijing Electron Positron Collider II (BEPCII), the resolution of existing BPMs is several hundred microns. But the requirement of transverse position resolution of BPM for future top-up injection needs to be more precise.
    PurposeThis paper is mainly concerned about the design and simulation of the cavity beam position monitor (CBPM) for BEPCII linac and free electron laser (FEL). The requirement of beam transverse position resolution for linac is several microns, even a few nanometers for FEL.
    MethodsWhen the beam bunch goes through the CBPM, it can excite different electromagnetic field modes in resonator. In these modes, TM110 is the most sensitive to beam transverse position offset. The design of CBPM is aim to analyze the relationship between TM110 and beam transverse position by CST Studio and Ansys HFSS.
    ConclusionIn this research, we design a pair of rectangular slots for position cavity to revise the direction of electromagnetic field. The simulation result of theoretical resolution is able to reach 15 nm@1nC with the operating frequency 2500 MHz. It is obviously that CBPM has more excellent resolution than all of operating BPM in BEPCII. Meanwhile, the research of CBPM improves the application of beam detection technology in BEPCII and accumulates technology for future design of HEPS and FEL. The mechanical design of the prototype is being fabricated.
  • [1]
    S. Walston, S. Boogert et al., Performance of a high resolution cavity beam position monitor system. Nucl. Instrum. Methods Phys. Res. A 578, 1–22 (2007)
    [2]
    Y. Inoue et al., Development of a high-resolution cavity-beam position monitor. Phys. Rev. Spec. Top. Accel. Beams 11, 062801 (2008)
    [3]
    N.Y. Joshi, Design and analysis techniques for cavity beam position monitor systems for electron accelerators (Doctoral Thesis). Royal Holloway, University of London (2013)
    [4]
    Q. Luo, Cavity beam position monitor system and related study (Doctoral Thesis). University of Science and Technology of China (2009)
    [5]
    D.M. Pozar, Microwave Engineering, 3rd edn (Wiley, Hoboken, 2005), ISBN 978-0470009826
    [6]
    N. Chritin, M. Wendt, et al. A high resolution cavity BPM for the CLIC Test Facility, in Proceedings of Biw10 Santa Fe New Mexico Us (2012)
    [7]
    V. Sargsyan, Cavity beam position monitor for the TESLA-cryomodule. Cross-Talk minimization, doctoral dissertation, Berlin (2003)
    [8]
    Ansys HFSS, https://www.ansys.com/solutions
    [9]
    M.D. Forno, Theoretical and experimental analysis of interactions between electromagnetic fields and relativistic electrons in vacuum chamber (Doctoral Thesis). University of Trieste (2012)
    [10]
    Z.H. Li, S-band cavity BPM for ILC, in The 2005 ILC Physics and Detector Workshop and 2nd ILC Accelerator Workshop (2005)
    [11]
    CST Microwave Studio, http://www.cst.com
    [12]
    R.X. Yuan, W.M. Zhou et al., Design and test of SX-FEL cavity BPM. Chin. Phys. C 37(11), 118001 (2013)
    [13]
    Solidworks, https://www.solidworks.com/
  • Related Articles

    [1]J. Song, J. Zhao, Q. Hou, W. Diao, P. Cao, H. Kou, W. Gong, N. Wang, Z. -A. Liu, A. Samalan, M. Tytgat, G. A. Alves, F. Marujo, E. A. Coelho, E. M. Da Costa, H. Nogima, A. Santoro, S. Fonseca De Souza, D. De Jesus Damiao, M. Thiel, K. Mota Amarilo, M. Barroso Ferreira Filho, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Shopova, G. Soultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka, S. J. Qian, C. Avila, D. Barbosa, A. Cabrera, A. Florez, J. Fraga, J. Reyes, Y. Assran, M. A. Mahmoud, I. Crotty, R. Aly, I. Laktineh, G. Grenier, M. Gouzevitch, L. Mirabito, L. Balleyguier, C. Combaret, W. Tromeur, G. Galbit, A. Luciol, X. Chen, I. Bagaturia, I. Lomidze, Z. Tsamlaidze, O. Kemularia, V. Amoozegar, B. Boghrati, M. Ebraimi, M. Mohammad Najafabadi, E. Zareian, M. Abbrescia, G. Iaselli, G. Pugliese, F. Loddo, N. De Filippis, D. Ramos, L. Benussi, S. Bianco, D. Piccolo, S. Meola, S. Buontempo, F. Carnevali, L. Lista, P. Paolucci, A. Braghieri, P. Salvini, P. Montagna, C. Riccardi, P. Vitulo, E. Asilar, J. Choi, T. J. Kim, S. Y. Choi, B. Hong, K. S. Lee, J. Goh, Y. Lee, C. Uribe Estrada, I. Pedraza, H. Castilla-Valdez, A. Sanchez-Hernandez, R. L. Fernandez, M. Ramirez-Garcia, E. Vazquez, M. A. Shah, N. Zaganidis, A. Radi, H. Hoorani, S. Muhammad, A. Ahmad, I. Asghar, J. Eysermans, F. Torres Da Silva De Araujo, on behalf of the CMS Muon Group. Research and development of time resolution and time reference adjustment for CMS improved resistive plate chambers (iRPCs)[J]. Radiation Detection Technology and Methods, 2024, 8(4): 1604-1613. doi: 10.1007/s41605-024-00473-w
    [2]Keqi Wang, Tao Yang, Chenxi Fu, Li Gong, Songting Jiang, Xiaoshen Kang, Zaiyi Li, Hangrui Shi, Xin Shi, Weimin Song, Congcong Wang, Suyu Xiao, Zijun Xu, Xiyuan Zhang. Design and simulation of a novel 4H-SiC LGAD timing device[J]. Radiation Detection Technology and Methods, 2024, 8(2): 1140-1147. doi: 10.1007/s41605-023-00431-y
    [3]Jiajia Zhai, Haohui Tang, Xianchao Huang, Shuangquan Liu, Yingjie Wang, Chong Li, Xiuzuo Liang, Yi Zhang, Meichan Feng, Zhiming Zhang, Long Wei. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. doi: 10.1007/s41605-022-00313-9
    [4]Mingchen Wang, Yonggang Wang, Liwei Wang. Evaluation of high-resolution and depth-encoding PET detector modules based on single-ended readout with TOFPET2 ASIC[J]. Radiation Detection Technology and Methods, 2021, 5(3): 451-458. doi: 10.1007/s41605-021-00270-9
    [5]Xiaorou Han, Long Wei, Xianchao Huang, Haohui Tang, Yingjie Wang, Wen He, Daowu Li, Zhiming Zhang. Simulation research on time resolution based on Cherenkov radiation[J]. Radiation Detection Technology and Methods, 2021, 5(3): 421-429. doi: 10.1007/s41605-021-00266-5
    [6]Lianghong Wei, Liang Zhan, Jun Cao, Wei Wang. Improving the energy resolution of the reactor antineutrino energy reconstruction with positron direction[J]. Radiation Detection Technology and Methods, 2020, 4(3): 356-361. doi: 10.1007/s41605-020-00191-z
    [7]Jianguo Qin, Caifeng Lai, Jun Xiao, Xinxin Lu, Tonghua Zhu, Rong Liu, Bangjiao Ye. Characteristics and time resolutions of two CeBr3 gamma-ray spectrometers[J]. Radiation Detection Technology and Methods, 2020, 4(3): 327-336. doi: 10.1007/s41605-020-00187-9
    [8]Zhiyong Song, Shifeng Sun, Xiaoping Ouyang. A simulation study of a high-resolution fast neutron imaging detector based on liquid scintillator loaded capillaries[J]. Radiation Detection Technology and Methods, 2020, 4(2): 153-160. doi: 10.1007/s41605-020-00164-2
    [9]Qibin Zheng, Jianjian Lu, Yikai Huo, Ke Han, Heng Lin, Tao Li, Kaixiang Ni, Shaobo Wang. Development of a 6D Kalman filter for charged particle tracking in time projection chamber without magnetic field[J]. Radiation Detection Technology and Methods, 2020, 4(1): 70-77. doi: 10.1007/s41605-019-0151-x
    [10]Jia-yi Ren, Wei Wei, Ru-yi Jin, Jie Zhang, Gang Liu, Xiao-shan Jiang, Zheng Wang. A high time resolution and low-power ASIC for MRPC applications[J]. Radiation Detection Technology and Methods, 2020, 4(1): 63-69. doi: 10.1007/s41605-019-0152-9
  • Jiashen Zhou, Jianshe Cao, Yanfeng Sui, et al. Design and simulation of cavity BPM for BEPCII[J]. Radiation Detection Technology and Methods, 2019, 3(3): 49-49. DOI: 10.1007/s41605-019-0125-z
    Citation: Jiashen Zhou, Jianshe Cao, Yanfeng Sui, et al. Design and simulation of cavity BPM for BEPCII[J]. Radiation Detection Technology and Methods, 2019, 3(3): 49-49. DOI: 10.1007/s41605-019-0125-z
  • Cited by

    Periodical cited type(1)

    1. Xiao-Yu Liu, Fang-Fang Wu, Tian-Yu Zhou, et al. Design and offline testing of a resonant stripline beam position monitor for the IRFEL project at NSRL. Nuclear Science and Techniques, 2020, 31(7) DOI:10.1007/s41365-020-00778-7

    Other cited types(0)

Catalog

    Article views (7) PDF downloads (0) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return