X
Advanced Search

The measurement system of acrylic transmittance for the JUNO central detector

Funds: 

This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA100102).

More Information
  • Received Date: March 31, 2020
  • Revised Date: May 10, 2020
  • Accepted Date: May 18, 2020
  • Available Online: October 17, 2022
  • Published Date: June 15, 2020
  • Background The Jiangmen Underground Neutrino Observatory (JUNO) has 20 kilo-ton liquid scintillator as target mass contained by a huge acrylic sphere to carry out the research on neutrino physics. Acrylic transmittance is considered as an important optical performance of the JUNO Central Detector as it has a direct relationship to the number of photons detected by the JUNO Central Detector and further affects the energy resolution of JUNO.
    Motivation The transmittance requirement of acrylic spherical panel for the JUNO Central Detector is exceeding 96% at the wavelength of 420 nm in ultrapure water and a specific measurement system was built and studied in Institute of High Energy Physics for this purpose, as the existing equipment cannot perform the sample test in the liquid and support the long sample length of 120 mm.
    Methods After improving the technology of thermoforming, the transmittances of the acrylic spherical panels meet the requirement of JUNO, which guarantees the batch production of acrylic panels on time. The design of the measurement system, the constitution of hardware, the development of control and data acquisition software are introduced, and the measurement uncertainty of the system and the transmittance results of the acrylic samples from the spherical panel are discussed in this article.
  • [1]
    Y.F. Li, J. Cao, Y.F. Wang, L. Zhan, Unambiguous determinationof the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008(2013)
    [2]
    Z.M. Wang. The JUNO central detector and its prototyping. In:XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015) IOP Publishing
    [3]
    X.Y. Yang, Y.K. Heng, X.Y. Ma et al., Thermal reliability analysis of the central detector of JUNO. Radiat. Detect Technol. Methods 3, 64(2019)
    [4]
    M. Li, Z. Guo, M. Yeh et al., Separation of scintillation and Cherenkov lights in linear alkyl benzene. Nucl. Inst. Methods Phys. Res. A 830, 303-308(2016)
    [5]
    J. Cheng, Z. Wang, L. Lebanowski et al., Determination of the total absorption peak in an electromagnetic. Nucl. Inst. Methods Phys. Res. A 827, 165-170(2016)
    [6]
    D. Zhou, Z. Zhao, J. Zhao, Prediction of excavation damage zone of a deep tunnel with large size subjected to high in situ stress. Chin. J. Geotech. Eng. 38, 67-72(2016). (In Chinese)
    [7]
    H. Wei, Z. Wang, S. Chen, Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors, arXiv 01671(1607)
    [8]
    F. An, et al,[JUNO Collaboration] Neutrino Physics with JUNO, J. Phys. G, 36:030401(2016)[arXiv:1507.05613[physics.ins-det]]
    [9]
    T. Adam, et al, JUNO Conceptual Design Report, arXiv:1508.07166v2[physics.ins-det](2015)
    [10]
    F.J. Luo, Y.K. Heng et al., PMT overshoot study for the JUNO prototype detector. Chin. Phys. C 9, 89-94(2016)
    [11]
    H.L. Xiao et al., Study of absorption and re-emission processes in a ternary liquid scintil-lation system. Chin. Phys. C 34, 1724(2010)
    [12]
    Y. Zhang, L.J. Wen et al., A complete optical model for liquid-scintillator detectors. Nucl. Inst. Methods Phys Res A 967, 163860(2020)
    [13]
    H.Q. Zhang, Performance in mass test of JUNO 20"PMTs, poster at TAUP2019
    [14]
    Z.M. Zhang, Optical Measurement Technology and Application for Glass in Building(China Building Industry Press, Beijing, 2019)
    [15]
    L.J. Pan, Fundamental Optics(China Machine Press, Beijing, 2016)
    [16]
    D.Y. Yu, H.Y. Tan, Engineering Optics(China Machine Press, Beijing, 2016)
    [17]
    http://www.hamamatsu.com.cn/
  • Related Articles

    [1]Yixiang Yang, Weidong Li, Tao Lin, Jiaheng Zou, Simon Charles Blyth, Xingtao Huang, Teng Li. Event index-based analysis in the JUNO experiment[J]. Radiation Detection Technology and Methods, 2024, 8(4): 1704-1711. doi: 10.1007/s41605-024-00477-6
    [2]Xiaoyu Yang, Yuekun Heng, Wei He, Xiaoyan Ma, Lei Yang, Jiajie Ling, Zhi Wu, Kaixi Huang, Caishen Wang, Ruiting Lei, Yatian Pei, Xiaohui Qian. Structure design and load test of the small prototype for the JUNO Central Detector[J]. Radiation Detection Technology and Methods, 2022, 6(4): 439-450. doi: 10.1007/s41605-022-00354-0
    [3]Tong Zhou, Xiaolu Ji, Kejun Zhu, Fei Li. DAQ readout prototype for JUNO[J]. Radiation Detection Technology and Methods, 2021, 5(4): 600-608. doi: 10.1007/s41605-021-00290-5
    [4]Yan Liu, Wei-Dong Li, Tao Lin, Wen-Xing Fang, Simon C. Blyth, Ji-Lei Xu, Miao He, Kun Zhang. Muon reconstruction with a convolutional neural network in the JUNO detector[J]. Radiation Detection Technology and Methods, 2021, 5(3): 364-372. doi: 10.1007/s41605-021-00259-4
    [5]Zhaohan Li, Xiaoyu Yang, Yuekun Heng, Xiaoyan Ma, Xiaohui Qian, Kaixi Huang, Zhi Wu, Wei He, Meihang Xu, Xiaolan Luo, Yatian Pei, Mengzhao Li, Zhiyan Cai, Wenlu Wei, Yifang Wang. Laser measurement system for acrylic transmittance of JUNO central detector[J]. Radiation Detection Technology and Methods, 2021, 5(3): 356-363. doi: 10.1007/s41605-021-00254-9
    [6]Xiaoyu Yang, Nan Li, Yuekun Heng, Xiaohui Qian, Xiaoyan Ma, Yuesheng Tang, Jianxia Xiao, Gaofeng Zhang, Wei Cheng, Hongbing Song, Mengzhao Li, Zhiyan Cai, Kaixi Huang, Zhi Wu, Wei He, Yatian Pei. Study on acrylic transmittance for JUNO Central Detector[J]. Radiation Detection Technology and Methods, 2021, 5(2): 284-289. doi: 10.1007/s41605-021-00242-z
    [7]Xiaoyu Yang, Lei Yang, Wei He, Yatian Pei, Yuekun Heng, Xiaoyan Ma, Huafeng Li, Kaixi Huang, Caishen Wang, Yi Li, Xiaohui Qian, Zhi Wu. Research on the measurement of connecting bars’ axial force of JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 362-371. doi: 10.1007/s41605-020-00192-y
    [8]Xiaohui Qian, Xiaoyan Ma, Yuekun Heng, Wei He, Zhonghua Qin, Yuesheng Tang, Jianxia Xiao, Gaofeng Zhang, Wei Cheng, Lei Li, Jian Tang, Tao Chen, Chang Liu, Zian Zhu, Shaojing Hou, Yatian Pei, Xiaoyu Yang. Structure design and compression experiment of the supporting node for JUNO PMMA detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 345-355. doi: 10.1007/s41605-020-00190-0
    [9]Xiaoyu Yang, Yuekun Heng, Xiaoyan Ma, Wei He, Huafeng Li, Kaixi Huang, Tao Song, Jiajie Ling, Zhi Wu, Xiao Tang, Xiaolan Luo, Xiaohui Qian, Yatian Pei, Nan Li, Fengjiao Luo, Zhiyan Cai, Mengzhao Li. Thermal reliability analysis of the central detector of JUNO[J]. Radiation Detection Technology and Methods, 2019, 3(4): 64-64. doi: 10.1007/s41605-019-0142-y
    [10]Nan Li, Yue-kun Heng, Miao He, Ji-lei Xu, Xuan-tong Zhang, Chuan-ya Cao, Zhi Wu, Feng-jiao Luo, Zhi-min Wang, Xiao-yu Yang, Mei-hang Xu, Zhong-hua Qin, Yu-zhen Yang, Bao-jun Yan, Shu-lin Liu. Characterization of 3-inch photomultiplier tubes for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2019, 3(1): 6-6. doi: 10.1007/s41605-018-0085-8
  • Xiaoyu Yang, Nan Li, Yuekun Heng, et al. The measurement system of acrylic transmittance for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 284-292. DOI: 10.1007/s41605-020-00182-0
    Citation: Xiaoyu Yang, Nan Li, Yuekun Heng, et al. The measurement system of acrylic transmittance for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 284-292. DOI: 10.1007/s41605-020-00182-0
  • Cited by

    Periodical cited type(8)

    1. Miao He, Zhonghua Qin, Diru Wu, et al. Mass production and performance study on the 20-inch PMT acrylic protection covers in JUNO. Journal of Instrumentation, 2024, 19(05): T05003. DOI:10.1088/1748-0221/19/05/T05003
    2. Xiaoyu Yang, Yuekun Heng, Meihang Xu, et al. Research on the optical properties and effect of the transparent epoxy for the JUNO central detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1064: 169466. DOI:10.1016/j.nima.2024.169466
    3. Angel Abusleme, Thomas Adam, Shakeel Ahmad, et al. The design and technology development of the JUNO central detector. The European Physical Journal Plus, 2024, 139(12) DOI:10.1140/epjp/s13360-024-05830-8
    4. Miao He, Zhonghua Qin, Shaojing Hou, et al. Design of the PMT underwater cascade implosion protection system for JUNO. Journal of Instrumentation, 2023, 18(02): P02013. DOI:10.1088/1748-0221/18/02/P02013
    5. Xiaoyu Yang, Yuekun Heng, Zhiqiang Chen, et al. The automatic measurement system for internal stress of acrylic. Journal of Instrumentation, 2023, 18(03): P03044. DOI:10.1088/1748-0221/18/03/P03044
    6. Zhaohan Li, Xiaoyu Yang, Yuekun Heng, et al. Laser measurement system for acrylic transmittance of JUNO central detector. Radiation Detection Technology and Methods, 2021, 5(3): 356. DOI:10.1007/s41605-021-00254-9
    7. Xiaoyu Yang, Nan Li, Yuekun Heng, et al. Study on acrylic transmittance for JUNO Central Detector. Radiation Detection Technology and Methods, 2021, 5(2): 284. DOI:10.1007/s41605-021-00242-z
    8. X. Yang, Y. Heng, Z. Li, et al. The stress measurement system for the JUNO Central Detector acrylic panels. Journal of Instrumentation, 2021, 16(12): P12040. DOI:10.1088/1748-0221/16/12/P12040

    Other cited types(0)

Catalog

    Article views (116) PDF downloads (0) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return