X
Advanced Search

The transfer line design for the HEPS project

Funds: 

This work is supported by high-energy photon source (HEPS),a major national science and technology infrastructure,National Natural Science Foundation of China (No.11805217,11922512),and Youth Innovation Promotion Association of Chinese Academy of Sciences (No.Y201904).

More Information
  • Received Date: May 31, 2020
  • Revised Date: September 14, 2020
  • Accepted Date: September 15, 2020
  • Available Online: October 17, 2022
  • Published Date: October 10, 2020
  • Purpose The high energy photon source (HEPS), a 6-GeV synchrotron radiation facility with ultralow emittance, is under construction in China. Three transfer lines are designed for HEPS. One low-energy transfer line is used to deliver the 500 MeV beam provided by the linac to the booster. Two high-energy transfer lines are used to connect the booster and the storage ring to realize beam accumulation in the booster at 6 GeV.
    Method The design of the transfer lines is closely related to the layout and optics design of the storage ring, booster and linac. Based on the physics design of the storage ring, booster and linac, the design of the transfer lines has been adjusted.
    Results and conclusion In this paper, the considerations and design of the latest lattice of transfer lines are described. The design satisfies the requirements of the high efficiency transmission and injection.
  • [1]
    Y. Jiao, G. Xu, X. Cui et al., The HEPS project. J. Synchrotron Radiat. 25, 1611-1618(2018)
    [2]
    Y.M. Peng, Z. Duan, Y.Y. Guo, et al., Status of HEPS booster lattice design and physics studies. in Proceedings. IPAC'18, TUPMF062, Vancouver, Canada, 2018
    [3]
    Project proposal of the High Energy Photon Source, IHEP-HEPS-PO-TR-17-001, Mar. 2017(in Chinese)
    [4]
    Y.M. Peng, Z. Duan, Y.Y. Guo, et al., The progress of HEPS booster design. in Proceedings IPAC'17, TUPAB065, Copenhagen, Denmark, 2017
    [5]
    G. Xu, Y. Jiao, Y. Peng, ESRF-type lattice design and optimization for the high energy photon source. Chin. Phys. C 40(2), 027001(2016)
    [6]
    Y.Y. Guo, Z. Duan, Y. Jiao, et al., High energy transport line design for the HEPS project. in Proceedings IPAC'17, TUPAB63, Copenhagen, Denmark, 2017
    [7]
    The feasibility report of the High Energy Photon Source, IHEP-HEPS-PO-TR-17-003-R0, Dec. 2017(in Chinese)
    [8]
    Preliminary design report of High Energy Photon Source, IHEP-HEPS-PO-TR-18-001-R0, Aug. 2018(in Chinese)
    [9]
    C. Meng, X. He, Y. Jiao et al., Physics design of the HEPS LINAC. Radiat. Detect. Technol. Methods (2020). https://doi.org/10.1007/s41605-020-00205-w
    [10]
    Y.M. Peng, Z. Duan, Y.Y. Guo et al., Design of the HEPS booster lattice. Radiat. Detect. Technol. Methods (2020). https://doi.org/10.1007/s41605-020-00202-z
    [11]
    Y. Jiao, F. Chen, P. He et al., Modification and optimization of the storage ring lattice of the High Energy Photon Source. Radiat. Detect. Technol. Methods (2020). https://doi.org/10.1007/s41605-020-00189-7
    [12]
    Y.M. Peng, Design study of high energy photon source low energy beam transport line. At. Energy Sci. Technol. 53(9), 1702-1707(2019). https://doi.org/10.7538/yzk.2019.53.09.1702
    [13]
    The MAD program User's reference manual
  • Related Articles

    [1]Huo Yi, Ma Changcheng, Zhang Jun, Huang Rui, Ge Rui. Experimental studies on the heat transfer characteristics of helium-based cryogenic oscillating heat pipes[J]. Radiation Detection Technology and Methods, 2024, 8(3): 1430-1436. doi: 10.1007/s41605-024-00464-x
    [2]Shuaishuai Zhang, Guodong Shen, Weiping Chai, Jingjing Zhang, Hongliang Guo, Lingxiao Hou, Liping Yao, Shuang Ruan, Jiancheng Yang. Analysis and mitigation of bump magnetic field tracking errors in a multiturn injection system[J]. Radiation Detection Technology and Methods, 2023, 7(4): 531-544. doi: 10.1007/s41605-023-00420-1
    [3]Yuanyuan Guo, Nan Li, Yuemei Peng, Daheng Ji, Hongfei Ji, Yi Jiao. Study on the fringe field effects in HEPS booster[J]. Radiation Detection Technology and Methods, 2023, 7(3): 382-386. doi: 10.1007/s41605-023-00407-y
    [4]Yingying Dai, Xingzhu Cui, Xin Liu, Yongwei Dong, Hongwei Liang, Zhenzhong Zhang, Xiaochuan Xia, Zhipeng Wei. Study on temperature response of the HERD calorimeter cell[J]. Radiation Detection Technology and Methods, 2023, 7(2): 227-233. doi: 10.1007/s41605-022-00377-7
    [5]Wang Xiaolong, Kang Ling, Dong Lan, Li Bo, Men Lingling, Luo Tao, Wang Tong, Liang Jing, He Zhenqiang, Ke Zhiyong, Ma Na, Lu Shang, Han Yuanying, Yan Luping, Zhang Luyan, Liu Xiaoyang, Yan Haoyue, Li Chunhua, Wu Lei. Research on error accumulation control of three-dimensional adjustment with offset constraint[J]. Radiation Detection Technology and Methods, 2022, 6(4): 569-576. doi: 10.1007/s41605-022-00350-4
    [6]Xiaojuan Zhao, Yidong Zhao, Lei Zheng, Kun Tang, Shuhu Liu, Fan Li, Jianmin Li. Optical design and optimization study of metrology sector at high energy photon source[J]. Radiation Detection Technology and Methods, 2021, 5(2): 174-180. doi: 10.1007/s41605-021-00241-0
    [7]Pingcheng Liu, Qiongyao Liu, Zhongjian Ma, Huijie Zhang, Mingyang Yan, Qingbin Wang. Radiation shielding for the first optics enclosure at the High Energy Photon Source beamlines[J]. Radiation Detection Technology and Methods, 2021, 5(2): 168-173. doi: 10.1007/s41605-021-00249-6
    [8]Yushuang Zheng, Qiong Xu, Yi Zou, Yan Li, Shuangquan Liu, Cunfeng Wei, Long Wei. Position coordinates-based iterative reconstruction for robotic CT[J]. Radiation Detection Technology and Methods, 2021, 5(1): 136-152. doi: 10.1007/s41605-020-00230-9
    [9]Zhidu Zhang, Jinming Hu, Xiaomei Zhang, Qiong Xu, Mohan Li, Cunfeng Wei, Long Wei, Zhe Wang. Experimental research of the energy bins for K-edge imaging using a photon counting detector: a phantom and mice study[J]. Radiation Detection Technology and Methods, 2020, 4(3): 303-311. doi: 10.1007/s41605-020-00184-y
    [10]Xiaoyu Yang, Nan Li, Yuekun Heng, Mengzhao Li, Zhiyan Cai, Xiaoyan Ma, Xiaohui Qian, Kaixi Huang, Zhi Wu, Wei He, Yatian Pei. The measurement system of acrylic transmittance for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 284-292. doi: 10.1007/s41605-020-00182-0
  • Yuanyuan Guo, Yuanyuan Wei, Yuemei Peng, et al. The transfer line design for the HEPS project[J]. Radiation Detection Technology and Methods, 2020, 4(4): 440-447. DOI: 10.1007/s41605-020-00209-6
    Citation: Yuanyuan Guo, Yuanyuan Wei, Yuemei Peng, et al. The transfer line design for the HEPS project[J]. Radiation Detection Technology and Methods, 2020, 4(4): 440-447. DOI: 10.1007/s41605-020-00209-6
  • Cited by

    Periodical cited type(13)

    1. Yue-Mei Peng, Jian-She Cao, Jin-Hui Chen, et al. Milestone progress of the HEPS booster commissioning. Nuclear Science and Techniques, 2024, 35(1) DOI:10.1007/s41365-024-01365-w
    2. Xiaohan Lu, Yaliang Zhao, Hongfei Ji, et al. A new modular framework for high-level application development at HEPS. Journal of Synchrotron Radiation, 2024, 31(2): 385. DOI:10.1107/S160057752301086X
    3. Yuemei Peng, Daheng Ji, Hongfei Ji, et al. Development of high-level applications for High Energy Photon Source booster. Journal of Instrumentation, 2024, 19(08): P08013. DOI:10.1088/1748-0221/19/08/P08013
    4. Y.-L. Zhao, H.-F. Ji, X.-H. Lu, et al. The high level applications for the HEPS Linac. Journal of Instrumentation, 2023, 18(06): P06014. DOI:10.1088/1748-0221/18/06/P06014
    5. Sheng-Chang Wang, Da-Yong He, Cai Meng, et al. Development and simulation of a gridded thermionic cathode electron gun for a high-energy photon source. Nuclear Science and Techniques, 2023, 34(3) DOI:10.1007/s41365-023-01195-2
    6. Yuanyuan Guo, Nan Li, Yuemei Peng, et al. Study on the fringe field effects in HEPS booster. Radiation Detection Technology and Methods, 2023, 7(3): 382. DOI:10.1007/s41605-023-00407-y
    7. Haisheng Xu, Cai Meng, Yuemei Peng, et al. Equilibrium electron beam parameters of the High Energy Photon Source. Radiation Detection Technology and Methods, 2023, 7(2): 279. DOI:10.1007/s41605-022-00374-w
    8. Xiang He, Jing-Ru Zhang, Hua Shi, et al. Waveguide distribution system of the HEPS linac. Radiation Detection Technology and Methods, 2023, 7(4): 502. DOI:10.1007/s41605-023-00417-w
    9. Wen Kang, Lei Liu, Yongji Yu, et al. Design of the magnets for the HEPS injector. Radiation Detection Technology and Methods, 2022, 6(2): 143. DOI:10.1007/s41605-022-00314-8
    10. Xiang He, Jing-Ru Zhang, Jing-Dong Liu, et al. RF design and test of a high-directivity high-power waveguide directional coupler for the HEPS. Radiation Detection Technology and Methods, 2022, 6(2): 137. DOI:10.1007/s41605-021-00308-y
    11. Zhe Duan, Jin-Hui Chen, Hua Shi, et al. Using a pre-kicker to ensure safe extractions from the HEPS storage ring. Nuclear Science and Techniques, 2021, 32(12) DOI:10.1007/s41365-021-00974-z
    12. Fang Liu, Ge Lei, Zhe Duan, et al. The design of HEPS global timing system. Radiation Detection Technology and Methods, 2021, 5(3): 379. DOI:10.1007/s41605-021-00257-6
    13. Yi Jiao, Fusan Chen, Ping He, et al. Modification and optimization of the storage ring lattice of the High Energy Photon Source. Radiation Detection Technology and Methods, 2020, 4(4): 415. DOI:10.1007/s41605-020-00189-7

    Other cited types(0)

Catalog

    Article views (10) PDF downloads (0) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return