Processing math: 100%
X
Advanced Search

Prospects of detecting the reactor ¯νe-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan

Funds: 

The study is supported by National Key R&

D Program of China (2016YFA0400304) and National Natural Science Foundation of China (11975244).

More Information
  • Received Date: December 10, 2020
  • Accepted Date: February 07, 2021
  • Available Online: October 16, 2022
  • Published Date: April 08, 2021
  • Background We propose to measure the coherent elastic neutrino-nucleus scattering (CEvNS) using a dual-phase liquid argon time projection chamber (TPC) with 200 kg fiducial mass. The detector is expected to be adjacent to the JUNO-TAO experiment and to be about 35 m from a reactor core with 4.6 GW thermal power at Taishan. The antineutrino flux is approximately 6×1012cm1s1 at this location, leading to more than 11,000 coherent scattering events per day in the fiducial mass.
    Motivation The nuclear recoil energies concentrate in the sub-keV region, corresponding to less than ten ionization electrons in the liquid argon. The key question is how to veto and shield the background in the hall where the vertical overburden is about 5 m.w.e. And what is the signal count rate and the background rate. In addition, what physical parameters can be measured what is the sensitivity.
    Methods We used the Geant4 to simulate the backgrounds from cosmic ray muons and ambient radioactivity decays. And a veto and shielding design is presented. Then a χ2 function is constructed and the sensitivity calculate package built to calculate the sensitivity of physical parameters.
    Results The detection of several ionization electrons can be achieved in the dual-phase TPC due to the large amplification in the gas region. With a feasible detection threshold of four ionization electrons, the signal rate is 955 per day. The detector is designed to be shielded well from cosmogenic backgrounds and ambient radioactivities to reach a 16% background-to-signal ratio in the energy region of interest. With the large CEvNS sample, the expected sensitivity of measuring the weak mixing angle sin2θw, and of limiting the neutrino magnetic moment are discussed. In addition, a synergy between the reactor antineutrino CEvNS experiment and the dark matter experiment is foreseen.
  • [1]
    D.Z. Freedman, Coherent effects of a weak neutral current. Phys. Rev. D 9, 1389–1392 (1974)
    [2]
    D. Akimov et al., Observation of Coherent elastic neutrino-nucleus scattering. Science 357(6356), 1123–1126 (2017)
    [3]
    D. Akimov et al., First detection of coherent elastic neutrino-nucleus scattering on argon, 3 (2020)
    [4]
    Matteo Cadeddu, Francesca Dordei, Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron RMS radius measurement from COHERENT. Phys. Rev. D 99(3), 033010 (2019)
    [5]
    M. Cadeddu, C. Giunti, Y. Li, Y. Zhang. Average CsI neutron density distribution from COHERENT data. PoS, NuFACT 2018:144 (2018)
    [6]
    D.K. Papoulias, T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics. Phys. Rev. D 97(3), 033003 (2018)
    [7]
    M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin, Y.Y. Zhang, Neutrino charge radii from COHERENT elastic neutrino-nucleus scattering. Phys. Rev. D 98(11):113010 (2018) [Erratum: Phys. Rev. D 101, 059902 (2020)]
    [8]
    E. Aprile et al., Results from a calibration of XENON100 using a source of dissolved radon-220. Phys. Rev. D 95(7), 072008 (2017)
    [9]
    Hongguang Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019)
    [10]
    C.E. Aalseth et al., DarkSide-20k: a 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 133, 131 (2018)
    [11]
    P. Agnes et al., Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121(8), 081307 (2018)
    [12]
    E. Aprile et al., Search for light dark matter interactions enhanced by the Migdal effect or bremsstrahlung in XENON1T. Phys. Rev. Lett. 123(24), 241803 (2019)
    [13]
    D.S. Akerib et al., Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique, 11 (2020)
    [14]
    D.K. Papoulias, T.S. Kosmas, Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei. Front. Phys. 7, 191 (2019)
    [15]
    J. Newby. Results from coherent, June (2020)
    [16]
    Alexis Aguilar-Arevalo et al., Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment. Phys. Rev. D 100(9), 092005 (2019)
    [17]
    G. Agnolet et al., Background studies for the MINER Coherent Neutrino scattering reactor experiment. Nucl. Instrum. Methods A 853, 53–60 (2017)
    [18]
    H. Bonet et al., First constraints on elastic neutrino nucleus scattering in the fully coherent regime from the Conus experiment. Phys. Rev. Lett. 126, 041804 (2020)
    [19]
    D. Yu Akimov et al., First ground-level laboratory test of the two-phase xenon emission detector RED-100. JINST 15(02), P02020 (2020)
    [20]
    A. Abusleme et al., TAO conceptual design report: a precision measurement of the reactor antineutrino spectrum with sub-percent energy resolution, 5 (2020)
    [21]
    P. Agnes et al. Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93(8):081101 (2016) [Addendum: Phys.Rev.D 95, 069901 (2017)]
    [22]
    C.G. Payne, S. Bacca, G. Hagen, W. Jiang, T. Papenbrock, Coherent elastic neutrino-nucleus scattering on 40Ar from first principles. Phys. Rev. C 100(6), 061304 (2019)
    [23]
    ThA Mueller et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011)
    [24]
    P. Huber. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C, 84:024617 (2011) [Erratum: Phys. Rev. C 85, 029901 (2012)]
    [25]
    M. Fallot et al., New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. Phys. Rev. Lett. 109, 202504 (2012)
    [26]
    D.Yu. Akimov et al., Status of the RED-100 experiment. JINST 12(06), C06018 (2017)
    [27]
    D. Khaitan, Supernova neutrino detection in LZ. JINST 13(02), C02024 (2018)
    [28]
    G. Carugno, B. Dainese, F. Pietropaolo, F. Ptohos, Electron lifetime detector for liquid argon. Nucl. Instrum. Methods A 292, 580–584 (1990)
    [29]
    S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A506, 250–303 (2003)
    [30]
    D. Gastler, E. Kearns, A. Hime, L.C. Stonehill, S. Seibert, J. Klein, W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Measurement of scintillation efficiency for nuclear recoils in liquid argon. Phys. Rev. C 85, 065811 (2012)
    [31]
    C. Bungau, B. Camanzi, J. Champer, Y. Chen, D.B. Cline, R. Luscher, J.D. Lewin, P.F. Smith, N.J.T. Smith, H. Wang. Monte Carlo studies of combined shielding and veto techniques for neutron background reduction in underground dark matter experiments based on liquid noble gas targets. Astropart. Phys., 23:97–115 (2005) [Erratum: Astropart. Phys. 23, 535–535 (2005)]
    [32]
    P. Agnes et al., First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Lett. B 743, 456–466 (2015)
    [33]
    F. Peng An et al. Improved measurement of the reactor antineutrino flux and spectrum at Daya bay. Chin. Phys. C 41(1):013002 (2017)
    [34]
    E. Aprile et al., Light dark matter search with ionization signals in XENON1T. Phys. Rev. Lett. 123(25), 251801 (2019)
    [35]
    M. Andriamirado et al., Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR, 6 (2020)
    [36]
    H.A. Molina et al. First antineutrino energy spectrum from 235U fissions with the STEREO detector at ILL, 10 (2020)
    [37]
    P.A. Zyla et al. Review of particle physics. PTEP 2020(8), 083C01 (2020)
    [38]
    M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, Y.Y. Zhang, Neutrino, electroweak, and nuclear physics from COHERENT elastic neutrino-nucleus scattering with refined quenching factor. Phys. Rev. D 101(3), 033004 (2020)
    [39]
    M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, E. Picciau, Y.Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data. Phys. Rev. D 102(1), 015030 (2020)
    [40]
    A.G. Beda, V.B. Brudanin, V.G. Egorov, D.V. Medvedev, V.S. Pogosov, M.V. Shirchenko, A.S. Starostin, The results of search for the neutrino magnetic moment in GEMMA experiment. Adv. High Energy Phys. 2012, 350150 (2012)
  • Yu-Ting Wei, Meng-Yun Guan, Jin-Chang Liu, et al. Prospects of detecting the reactor ¯νe-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan[J]. Radiation Detection Technology and Methods, 2021, 5(2): 297-306. DOI: 10.1007/s41605-021-00243-y
    Citation: Yu-Ting Wei, Meng-Yun Guan, Jin-Chang Liu, et al. Prospects of detecting the reactor ¯νe-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan[J]. Radiation Detection Technology and Methods, 2021, 5(2): 297-306. DOI: 10.1007/s41605-021-00243-y
  • Cited by

    Periodical cited type(5)

    1. Hao-Zhe Zheng, Yuan-Yuan Liu, Li Wang, et al. Application and development of liquid argon detector in rare event detection. Acta Physica Sinica, 2023, 72(5): 052901. DOI:10.7498/aps.72.20222055
    2. Lei Zhang, Chenkai Qiao, Jingjun Zhu, et al. Preparation of Large Volume Solid Argon Crystal and Its Feasibility Test as a Scintillation Material. Crystals, 2022, 12(10): 1416. DOI:10.3390/cryst12101416
    3. Kaixuan Ni, Jianyang Qi, Evan Shockley, et al. Sensitivity of a Liquid Xenon Detector to Neutrino–Nucleus Coherent Scattering and Neutrino Magnetic Moment from Reactor Neutrinos. Universe, 2021, 7(3): 54. DOI:10.3390/universe7030054
    4. L. Wang, M.Y. Guan, H.J. Qin, et al. Characterization of VUV4 SiPM for liquid argon detector. Journal of Instrumentation, 2021, 16(07): P07021. DOI:10.1088/1748-0221/16/07/P07021
    5. Chenguang Su, Qian Liu, Tianjiao Liang. CEνNS Experiment Proposal at CSNS. NuFACT 2022, DOI:10.3390/psf2023008019

    Other cited types(0)

Catalog

    Article views (1) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return