[1] |
D.Z. Freedman, Coherent effects of a weak neutral current. Phys. Rev. D 9, 1389–1392 (1974)
|
[2] |
D. Akimov et al., Observation of Coherent elastic neutrino-nucleus scattering. Science 357(6356), 1123–1126 (2017)
|
[3] |
D. Akimov et al., First detection of coherent elastic neutrino-nucleus scattering on argon, 3 (2020)
|
[4] |
Matteo Cadeddu, Francesca Dordei, Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron RMS radius measurement from COHERENT. Phys. Rev. D 99(3), 033010 (2019)
|
[5] |
M. Cadeddu, C. Giunti, Y. Li, Y. Zhang. Average CsI neutron density distribution from COHERENT data. PoS, NuFACT 2018:144 (2018)
|
[6] |
D.K. Papoulias, T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics. Phys. Rev. D 97(3), 033003 (2018)
|
[7] |
M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin, Y.Y. Zhang, Neutrino charge radii from COHERENT elastic neutrino-nucleus scattering. Phys. Rev. D 98(11):113010 (2018) [Erratum: Phys. Rev. D 101, 059902 (2020)]
|
[8] |
E. Aprile et al., Results from a calibration of XENON100 using a source of dissolved radon-220. Phys. Rev. D 95(7), 072008 (2017)
|
[9] |
Hongguang Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019)
|
[10] |
C.E. Aalseth et al., DarkSide-20k: a 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 133, 131 (2018)
|
[11] |
P. Agnes et al., Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121(8), 081307 (2018)
|
[12] |
E. Aprile et al., Search for light dark matter interactions enhanced by the Migdal effect or bremsstrahlung in XENON1T. Phys. Rev. Lett. 123(24), 241803 (2019)
|
[13] |
D.S. Akerib et al., Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique, 11 (2020)
|
[14] |
D.K. Papoulias, T.S. Kosmas, Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei. Front. Phys. 7, 191 (2019)
|
[15] |
J. Newby. Results from coherent, June (2020)
|
[16] |
Alexis Aguilar-Arevalo et al., Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment. Phys. Rev. D 100(9), 092005 (2019)
|
[17] |
G. Agnolet et al., Background studies for the MINER Coherent Neutrino scattering reactor experiment. Nucl. Instrum. Methods A 853, 53–60 (2017)
|
[18] |
H. Bonet et al., First constraints on elastic neutrino nucleus scattering in the fully coherent regime from the Conus experiment. Phys. Rev. Lett. 126, 041804 (2020)
|
[19] |
D. Yu Akimov et al., First ground-level laboratory test of the two-phase xenon emission detector RED-100. JINST 15(02), P02020 (2020)
|
[20] |
A. Abusleme et al., TAO conceptual design report: a precision measurement of the reactor antineutrino spectrum with sub-percent energy resolution, 5 (2020)
|
[21] |
P. Agnes et al. Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93(8):081101 (2016) [Addendum: Phys.Rev.D 95, 069901 (2017)]
|
[22] |
C.G. Payne, S. Bacca, G. Hagen, W. Jiang, T. Papenbrock, Coherent elastic neutrino-nucleus scattering on 40Ar from first principles. Phys. Rev. C 100(6), 061304 (2019)
|
[23] |
ThA Mueller et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011)
|
[24] |
P. Huber. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C, 84:024617 (2011) [Erratum: Phys. Rev. C 85, 029901 (2012)]
|
[25] |
M. Fallot et al., New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. Phys. Rev. Lett. 109, 202504 (2012)
|
[26] |
D.Yu. Akimov et al., Status of the RED-100 experiment. JINST 12(06), C06018 (2017)
|
[27] |
D. Khaitan, Supernova neutrino detection in LZ. JINST 13(02), C02024 (2018)
|
[28] |
G. Carugno, B. Dainese, F. Pietropaolo, F. Ptohos, Electron lifetime detector for liquid argon. Nucl. Instrum. Methods A 292, 580–584 (1990)
|
[29] |
S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A506, 250–303 (2003)
|
[30] |
D. Gastler, E. Kearns, A. Hime, L.C. Stonehill, S. Seibert, J. Klein, W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Measurement of scintillation efficiency for nuclear recoils in liquid argon. Phys. Rev. C 85, 065811 (2012)
|
[31] |
C. Bungau, B. Camanzi, J. Champer, Y. Chen, D.B. Cline, R. Luscher, J.D. Lewin, P.F. Smith, N.J.T. Smith, H. Wang. Monte Carlo studies of combined shielding and veto techniques for neutron background reduction in underground dark matter experiments based on liquid noble gas targets. Astropart. Phys., 23:97–115 (2005) [Erratum: Astropart. Phys. 23, 535–535 (2005)]
|
[32] |
P. Agnes et al., First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Lett. B 743, 456–466 (2015)
|
[33] |
F. Peng An et al. Improved measurement of the reactor antineutrino flux and spectrum at Daya bay. Chin. Phys. C 41(1):013002 (2017)
|
[34] |
E. Aprile et al., Light dark matter search with ionization signals in XENON1T. Phys. Rev. Lett. 123(25), 251801 (2019)
|
[35] |
M. Andriamirado et al., Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR, 6 (2020)
|
[36] |
H.A. Molina et al. First antineutrino energy spectrum from 235U fissions with the STEREO detector at ILL, 10 (2020)
|
[37] |
P.A. Zyla et al. Review of particle physics. PTEP 2020(8), 083C01 (2020)
|
[38] |
M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, Y.Y. Zhang, Neutrino, electroweak, and nuclear physics from COHERENT elastic neutrino-nucleus scattering with refined quenching factor. Phys. Rev. D 101(3), 033004 (2020)
|
[39] |
M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, E. Picciau, Y.Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data. Phys. Rev. D 102(1), 015030 (2020)
|
[40] |
A.G. Beda, V.B. Brudanin, V.G. Egorov, D.V. Medvedev, V.S. Pogosov, M.V. Shirchenko, A.S. Starostin, The results of search for the neutrino magnetic moment in GEMMA experiment. Adv. High Energy Phys. 2012, 350150 (2012)
|
Citation: | Yu-Ting Wei, Meng-Yun Guan, Jin-Chang Liu, et al. Prospects of detecting the reactor ¯νe-Ar coherent elastic scattering with a low-threshold dual-phase argon time projection chamber at Taishan[J]. Radiation Detection Technology and Methods, 2021, 5(2): 297-306. DOI: 10.1007/s41605-021-00243-y |
1. | Hao-Zhe Zheng, Yuan-Yuan Liu, Li Wang, et al. Application and development of liquid argon detector in rare event detection. Acta Physica Sinica, 2023, 72(5): 052901. DOI:10.7498/aps.72.20222055 |
2. | Lei Zhang, Chenkai Qiao, Jingjun Zhu, et al. Preparation of Large Volume Solid Argon Crystal and Its Feasibility Test as a Scintillation Material. Crystals, 2022, 12(10): 1416. DOI:10.3390/cryst12101416 |
3. | Kaixuan Ni, Jianyang Qi, Evan Shockley, et al. Sensitivity of a Liquid Xenon Detector to Neutrino–Nucleus Coherent Scattering and Neutrino Magnetic Moment from Reactor Neutrinos. Universe, 2021, 7(3): 54. DOI:10.3390/universe7030054 |
4. | L. Wang, M.Y. Guan, H.J. Qin, et al. Characterization of VUV4 SiPM for liquid argon detector. Journal of Instrumentation, 2021, 16(07): P07021. DOI:10.1088/1748-0221/16/07/P07021 |
5. | Chenguang Su, Qian Liu, Tianjiao Liang. CEνNS Experiment Proposal at CSNS. NuFACT 2022, DOI:10.3390/psf2023008019 |