X
Advanced Search

Laser measurement system for acrylic transmittance of JUNO central detector

Funds: 

This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA100102).

More Information
  • Received Date: February 17, 2021
  • Revised Date: March 08, 2021
  • Accepted Date: March 21, 2021
  • Available Online: October 16, 2022
  • Published Date: April 07, 2021
  • Background During the research phase of acrylic panel for the Jiangmen Underground Neutrino Observatory (JUNO) central detector (CD), the darkroom transmittance measurement system (DTMS) was designed and built, and a massive amount of measurements were carried out to help determine the composition and processing techniques of the acrylic panel.
    Motivation The mass production of acrylic panels was started after the pilot production. The requirement of transmittance measurement put forward new demands on operation, and a new measurement system was considered to support removable and non-destructive measurement on site.
    Result After the accomplishment of design, development and verification were completed, the laser measurement system came into use in the acrylic workshop of Taixing Donchamp Acrylic Ltd, and the transmittance results of acrylic spherical panels met the requirement of JUNO. The optical design, tooling design, data processing interface and uncertainty analyses of the laser measurement system are discussed in detail, and the measured transmittance results are also introduced in this article.
  • [1]
    Y.F. Li, J. Cao, Y.F. Wang, L. Zhan, Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013)
    [2]
    JUNO Conceptual Design Report (2015)
    [3]
    X.Y. Yang, Y.K. Heng, X.Y. Ma et al., Thermal reliability analysis of the central detector of JUNO. Radiat. Detect. Technol. Methods 3, 64 (2019)
    [4]
    X. Yang, Y. Heng, H. Li et al., The design of the small prototype for the central detector of JUNO. Radiat. Detect. Technol. Methods 2, 46 (2018). https://doi.org/10.1007/s41605-018-0073-z
    [5]
    T.Adam, et al., JUNO Conceptual Design Report. arXiv preprint arXiv:1508.07166[physics.ins-det] (2015)
    [6]
    M. Li, Z. Guo, M. Yeh et al., Separation of scintillation and Cherenkov lights in linear alkyl benzene. Nucl. Instrum. Methods Phys. Res. A 830, 303–308 (2016)
    [7]
    J. Cheng, Z. Wang, L. Lebanowski et al., Determination of the total absorption peak in an electromagnetic. Nucl. Instrum. Methods Phys. Res. A 827, 165–170 (2016)
    [8]
    D. Zhou, Z. Zhao, J. Zhao, Prediction of excavation damage zone of a deep tunnel with large size subjected to high in-situ stress. Chin. J. Geotech. Eng. 38, 67–72 (2016). ((In Chinese))
    [9]
    H. Wei, Z.Wang, S. Chen, Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors. arXiv:1607.01671 (1607)
    [10]
    F.J. Luo, Y.K. Heng et al., PMT overshoot study for the JUNO prototype detector. Chin. Phys. C 9, 89–94 (2016)
    [11]
    H.L. Xiao et al., Study of absorption and re-emission processes in a ternary liquid scintillation system. ChinesePhysicsC 34, 1724 (2010)
    [12]
    Y. Zhang, L.J. Wen et al., A complete optical model for liquid-scintillator detectors. Nucl. Instrum. Methods Phys. Res. A 967, 163860 (2020)
    [13]
    L.J. Wen, M. He, Y.F. Wang, J. Cao, S.L. Liu, Y.K. Heng, Z.H. Qin, A quantitative approach to select PMTs for large detectors. Nucl. Instrum. Methods A 947, 162766 (2019)
    [14]
    20-00182-0
    [15]
    http://www.cnilaser.com/C-blue_laser420.htm
    [16]
    http://www.elecfans.com/ni/
  • Related Articles

    [1]Yixiang Yang, Weidong Li, Tao Lin, Jiaheng Zou, Simon Charles Blyth, Xingtao Huang, Teng Li. Event index-based analysis in the JUNO experiment[J]. Radiation Detection Technology and Methods, 2024, 8(4): 1704-1711. doi: 10.1007/s41605-024-00477-6
    [2]Yangfu Wang, Xiaoshan Jiang, Jun Hu, Peiliang Wang, Lei Fan, Shaojing Hou, Zhe Ning, Yunhua Sun, Xiongbo Yan, Zheng Wang, Ziyue Yan, Peiran Ye, Jie Zhang, Alberto Garfagnini, Antonio Bergnoli, Riccardo Brugnera, Beatrice Jelmini, Filippo Marini, Marco Grassi, Mariia Redchuk, Andrea Serafini, Katharina von Sturm. Thermal management for the underwater frontend and readout electronics of JUNO 20-inch PMTs[J]. Radiation Detection Technology and Methods, 2023, 7(3): 418-426. doi: 10.1007/s41605-023-00401-4
    [3]Diru Wu, Jilei Xu, Miao He, Zhimin Wang, Ziliang Chu. Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO[J]. Radiation Detection Technology and Methods, 2022, 6(3): 349-360. doi: 10.1007/s41605-022-00324-6
    [4]Tong Zhou, Xiaolu Ji, Kejun Zhu, Fei Li. DAQ readout prototype for JUNO[J]. Radiation Detection Technology and Methods, 2021, 5(4): 600-608. doi: 10.1007/s41605-021-00290-5
    [5]Yan Liu, Wei-Dong Li, Tao Lin, Wen-Xing Fang, Simon C. Blyth, Ji-Lei Xu, Miao He, Kun Zhang. Muon reconstruction with a convolutional neural network in the JUNO detector[J]. Radiation Detection Technology and Methods, 2021, 5(3): 364-372. doi: 10.1007/s41605-021-00259-4
    [6]Xiaoyu Yang, Nan Li, Yuekun Heng, Xiaohui Qian, Xiaoyan Ma, Yuesheng Tang, Jianxia Xiao, Gaofeng Zhang, Wei Cheng, Hongbing Song, Mengzhao Li, Zhiyan Cai, Kaixi Huang, Zhi Wu, Wei He, Yatian Pei. Study on acrylic transmittance for JUNO Central Detector[J]. Radiation Detection Technology and Methods, 2021, 5(2): 284-289. doi: 10.1007/s41605-021-00242-z
    [7]Xiaoyu Yang, Lei Yang, Wei He, Yatian Pei, Yuekun Heng, Xiaoyan Ma, Huafeng Li, Kaixi Huang, Caishen Wang, Yi Li, Xiaohui Qian, Zhi Wu. Research on the measurement of connecting bars’ axial force of JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 362-371. doi: 10.1007/s41605-020-00192-y
    [8]Xiaoyu Yang, Nan Li, Yuekun Heng, Mengzhao Li, Zhiyan Cai, Xiaoyan Ma, Xiaohui Qian, Kaixi Huang, Zhi Wu, Wei He, Yatian Pei. The measurement system of acrylic transmittance for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 284-292. doi: 10.1007/s41605-020-00182-0
    [9]Xiaoyu Yang, Yuekun Heng, Xiaoyan Ma, Wei He, Huafeng Li, Kaixi Huang, Tao Song, Jiajie Ling, Zhi Wu, Xiao Tang, Xiaolan Luo, Xiaohui Qian, Yatian Pei, Nan Li, Fengjiao Luo, Zhiyan Cai, Mengzhao Li. Thermal reliability analysis of the central detector of JUNO[J]. Radiation Detection Technology and Methods, 2019, 3(4): 64-64. doi: 10.1007/s41605-019-0142-y
    [10]Nan Li, Yue-kun Heng, Miao He, Ji-lei Xu, Xuan-tong Zhang, Chuan-ya Cao, Zhi Wu, Feng-jiao Luo, Zhi-min Wang, Xiao-yu Yang, Mei-hang Xu, Zhong-hua Qin, Yu-zhen Yang, Bao-jun Yan, Shu-lin Liu. Characterization of 3-inch photomultiplier tubes for the JUNO central detector[J]. Radiation Detection Technology and Methods, 2019, 3(1): 6-6. doi: 10.1007/s41605-018-0085-8
  • Zhaohan Li, Xiaoyu Yang, Yuekun Heng, et al. Laser measurement system for acrylic transmittance of JUNO central detector[J]. Radiation Detection Technology and Methods, 2021, 5(3): 356-363. DOI: 10.1007/s41605-021-00254-9
    Citation: Zhaohan Li, Xiaoyu Yang, Yuekun Heng, et al. Laser measurement system for acrylic transmittance of JUNO central detector[J]. Radiation Detection Technology and Methods, 2021, 5(3): 356-363. DOI: 10.1007/s41605-021-00254-9
  • Cited by

    Periodical cited type(4)

    1. Xiaoyu Yang, Yuekun Heng, Meihang Xu, et al. Research on the optical properties and effect of the transparent epoxy for the JUNO Central Detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024. DOI:10.1016/j.nima.2024.169466
    2. Xiaoyu Yang, Yuekun Heng, Zhiqiang Chen, et al. The automatic measurement system for internal stress of acrylic. Journal of Instrumentation, 2023, 18(03): P03044. DOI:10.1088/1748-0221/18/03/P03044
    3. Yuanxia Li, Xiaohui Qian, Xiaolan Luo, et al. Study on U/Th residual radioactivity in acrylic from surface treatment. Journal of Instrumentation, 2023, 18(05): P05023. DOI:10.1088/1748-0221/18/05/P05023
    4. X. Yang, Y. Heng, Z. Li, et al. The stress measurement system for the JUNO Central Detector acrylic panels. Journal of Instrumentation, 2021, 16(12): P12040. DOI:10.1088/1748-0221/16/12/P12040

    Other cited types(0)

Catalog

    Article views (21) PDF downloads (0) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return