[1] |
L. De Chiffre, S. Carmignato, J. Kruth, R. Schmitt, A. Weckenmann, CIRP annals - manufacturing technology Industrial applications of computed tomography. CIRP Ann. Manuf. Technol. 63(2), 655–677 (2014). https://doi.org/10.1016/j.cirp.2014.05.011
|
[2] |
A. Miceli et al., Monte Carlo simulations of a high-resolution X-ray CT system for industrial applications. Nucl. Instrum. Methods Phys. Res. Sect. A 583(2–3), 313–323 (2007). https://doi.org/10.1016/j.nima.2007.09.012
|
[3] |
K. Schörner, M. Goldammer, J. Stephan, Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269(3), 292–299 (2011). https://doi.org/10.1016/j.nimb.2010.11.053
|
[4] |
W.O. Batista, M.R. Soares, M.V.L. de Oliveira, A.F. Maia, L.V.E. Caldas, Assessment of protocols in cone-beam CT with symmetric and asymmetric beams using effective dose and air kerma-area product. Appl. Radiat. Isot. 100, 16–20 (2015). https://doi.org/10.1016/j.apradiso.2015.01.014
|
[5] |
J.H. Siewerdsen, D.A. Jaffray, Optimization of x-ray imaging geometry (with specific application to flat-panel cone-beam computed tomography). Med. Phys. 27(8), 1903–1914 (2000). https://doi.org/10.1118/1.1286590
|
[6] |
M.R. Soares, W.O. Batista, P.L. Antonio, L.V.E. Caldas, A.F. Maia, Study of effective dose of various protocols in equipment cone beam CT. Appl. Radiat. Isot. 100, 21–26 (2015). https://doi.org/10.1016/j.apradiso.2015.01.012
|
[7] |
A. Staude et al., Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method. NDT E Int. 44(6), 531 536 (2011). https://doi.org/10.1016/j.ndteint.2011.05.006
|
[8] |
O. Kadri, A. Alfuraih, Monte Carlo assessment of coded aperture tool for breast imaging: a Mura-mask case study. Nucl. Sci. Tech. 30, 11 (2019). https://doi.org/10.1007/s41365-019-0682-3
|
[9] |
L.S. Boia et al., Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation. Appl. Radiat. Isot. 70(1), 144–148 (2012). https://doi.org/10.1016/j.apradiso.2011.08.017
|
[10] |
J.J. Morant, M. Salvadó, R. Casanovas, I. Hernández-Girón, E. Velasco, A. Calzado, Validation of a Monte Carlo simulation for dose assessment in dental cone beam CT examinations. Phys. Medica 28(3), 200–209 (2012). https://doi.org/10.1016/j.ejmp.2011.06.047
|
[11] |
E. Spezi, P. Downes, E. Radu, R. Jarvis, Monte Carlo simulation of an x-ray volume imaging cone beam CT unit. Med. Phys. 36(1), 127–136 (2009). https://doi.org/10.1118/1.3031113
|
[12] |
R. Thierry, A. Miceli, J. Hofmann, A. Flisch, U. Sennhauser, Hybrid simulation of scatter intensity in industrial cone-beam computed tomography. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 598(2), 611–619 (2009). https://doi.org/10.1016/j.nima.2008.10.011
|
[13] |
V. Mosorov et al., Monte Carlo simulation for multi-channel gamma-ray process tomography. Meas. Sci. Technol. 22(5), 055502 (2011). https://doi.org/10.1088/0957-0233/22/5/055502
|
Citation: | Thuy Duong Tran, Ngoc Ha Bui, Kim Tuan Tran, et al. Monte Carlo simulation of a cone-beam CT system for lightweight casts[J]. Radiation Detection Technology and Methods, 2021, 5(4): 504-512. DOI: 10.1007/s41605-021-00279-0 |
1. | Muzi Li. Lightweight small target detection based on aerial remote sensing images. Journal of Measurements in Engineering, 2024. DOI:10.21595/jme.2024.23609 |