X
Advanced Search

The technology for detection of gamma-ray burst with GECAM satellite

Funds: 

This project is supported by National Natural Science Foundation of China (12173038) and the strategic leading science and technology program (XDA 15360100, XDA 15360102) of the Chinese Academy of Sciences.

More Information
  • Received Date: April 14, 2021
  • Revised Date: September 09, 2021
  • Accepted Date: September 28, 2021
  • Available Online: October 17, 2022
  • Published Date: November 09, 2021
  • Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts, which is related to gravitational waves of double compact object mergers. The GECAM satellite also detects and investigates various bursts of high-energy celestial bodies.
    Purposes and methods In this study, we designed, developed and calibrated the payload and launched it into orbit with GECAM satellite. The payload consists of the gamma ray detector (GRD, for detecting 4 keV–4 MeV X/γ ray), the charged particle detector (CPD, for detecting 150 keV–5 MeV charged particle), and the electronic box (EBOX). The all-sky field coverage is achieved via two 229-degree large-area satellites positioned 180 degrees apart and are on opposite sides of the geo-center. Each satellite is equipped with 25 GRDs and 8 CPDs; thus, the satellite can identify charged particle bursts in space. Gamma-ray detectors adopt lanthanum bromide crystal technology combined with silicon photomultipliers. This is the first time that this technology was used massively in space detectors.
    Conclusions The GECAM satellite can quickly determine the direction of gamma-ray bursts (positioning) via indexing and fitting method, while the transmit variability, energy spectrum and direction of the gamma-ray bursts guide subsequent observations through the Beidou-3 RDSS in quasi-real time. It will play an important role in the study of high energy celestial bursts.
  • [1]
    S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects[J]. Phys. Today 36 (10), 89–90 (1983)
    [2]
    B. Abbott, R. Abbott, T.D. Abbott et al., Observation of gravitational waves from a binary black hole merger[J]. Phys. Rev. Lett. 116 (6), 291–311 (2016)
    [3]
    B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: observation of gravitational waves from a binary neutron star inspiral. PRL 119 , 161101 (2017)
    [4]
    F. Gbm, A.C. Team, A. Team et al., Multi-messenger observations of a binary neutron star merger[J]. Astrophys. J. 848 (2), 1–59 (2017)
    [5]
    B. Abbott, R. Abbott, T.D. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A[J]. Astrophys. J. 848 (2), 1–27 (2017)
    [6]
    P. D’Avanzo1, S. Campana1, O.S. Salafia, et al., The evolution of the X–ray afterglow emission of GW 170817/GRB 170817A in XMM-Newton observations. Astron. Astrophys. http://arxiv.org/abs/1801.06164v2 (2018)
    [7]
    A. Murguiaberthier, E. Ramirezruiz, C.D. Kilpatrick et al., A neutron star binary merger model for GW170817/GRB 170817A/SSS17a[J]. Astrophys. J. 848 (2), L34 (2017)
    [8]
    J.J. Ruan, M. Nynka, D. Haggard et al., Brightening x-ray emission from GW170817/GRB 170817A: further evidence for an outflow[J]. Astrophys. J. 853 (1), L4 (2018)
    [9]
    T. Li, S. Xiong, S. Zhang et al., Insight -HXMT observations of the first binary neutron star merger GW170817[J]. Sci. China Phys. Mech. Astron. 61 (3), 1–8 (2018)
    [10]
    B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. PRL 119 , 141101 (2017)
    [11]
    LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL, Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848 , L13 (2017)
    [12]
    C.S. Kochanek, T. Piran, Gravitational waves and gamma -ray bursts. Astrophys. J. (1993). https://doi.org/10.1086/187083
    [13]
    H.A. Krimm et al., The swift/bat hard x-ray transient monitor. Astrophys. J. Suppl. Ser. 209 , 14 (2013)
    [14]
    C. Meegan et al., The fermi gamma-ray burst monitor. Astrophys. J. 702 (791–804), 1 (2009)
    [15]
    K. Yamaoka, A. Yoshida, Y. Nonaka, et al., The CALET Gamma-ray Burst Monitor (CGBM). in Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011 (Vol. 9, pp. 111–114). Institute of High Energy Physics. (2011) https://doi.org/10.7529/ICRC2011/V09/0839
    [16]
    C.-M. Zhang, Y.-Q. Ma, H.-Y. Wang et al., On border the spaceship “Shen Zhou 2” X ray detector and its calibration and performance at orbit. Nuclear Electron. Detect. Technol. 1 , 1–7 (2005)
    [17]
    T. Ma, J. Chang, N. Zhang, W. Jian et al., Gamma-ray spectrometer onboard Chang’E-2. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 726 , 113–115 (2013). https://doi.org/10.1016/j.nima.2013.05.162
    [18]
    S.-N. Zhang et al., Overview to the hard X-ray modulation telescope (insight-HXMT) satellite. Sci. China Phys. Mech. Astron. (2020). https://doi.org/10.1007/s11433-019-1432-6
    [19]
    J. Sun, B. Wu, T. Bao, et al., Performance study of the gamma-ray bursts polarimeter POLAR[J]. in Proceedings of SPIE (2016)
    [20]
    J. Wen, X. Long, X. Zheng, Y. An, H. Feng, M. Zeng et al., GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Exp. Astron. 48 , 77 (2019)
    [21]
    X. Li et al., The GECAM and its payload. Sci. Sin. Phys. Mech. Astron. 50 (12), 129508 (2020). https://doi.org/10.1360/SSPMA-2019-0417
    [22]
    Band et al., BATSE observations of gamma-ray burst spectra. I. Spectral diversity. ApJ 413 , 281 (1993)
    [23]
    D. Zhang, X. Li, S. Xiong et al., Energy response of GECAM gamma-ray detector based on LaBr 3: Ce and SiPM array. NIMA 921 , 8–13 (2019)
    [24]
    D. Guo, W. Peng, Y. Zhu, G. Li, J. Liao, S. Xiong, R. Qiao, X. Li, Z. An, Y. Xu, S. Yang, D. Zhang, X. Sun, Energy response and in-flight background simulationfor GECAM. Sci. Sin. Phys. Mech. Astron. 50 (12), 129509 (2020). https://doi.org/10.1360/SSPMA-2020-0015
    [25]
    R.-Q. Song, Z.-H. An, J.-J. Wu, W.-C. Lai, S.-M. Guo, P.-Y. Zhou, X.-Q. Li, Research on the performance of GECAM satellite LaBr 3(Ce)detector in low energy region. Nuclear Electron. Detect. Technol. 3 , 467–473 (2020)
    [26]
    V. Connaughton et al., Localization of gamma-ray bursts using the fermi gamma-ray burst monitor. ApJS 216 , 32 (2015). https://doi.org/10.1088/0067-0049/216/2/32
    [27]
    X. Zhou, X. Li et al., Introduction to a calibration facility for hard X-ray detectors. Exp. Astron. 38 (3), 433–441 (2014)
    [28]
    Z. An, et al., The design and performance of GRD onboard the GECAM satellite, RDTM, GECAM special issue, 2021 (the detail need to be updated)
    [29]
    Z. Zhang, L. Chen, X. Li et al., Observed propagation route of VLF transmitter signals in the magnetosphere. J. Geophys. Res. Space Phys. 123 (7), 5528–5537 (2018). https://doi.org/10.1029/2018JA025637
    [30]
    Z.X. Zhang, X.Q. Li et al., North west cape-induced electron precipitation and theoretical simulation. Chin. Phys. B 25 (11), 119401 (2016)
    [31]
    X. Li et al., Study of the North West Cape electron belts observed by DEMETER satellite. J. Geophys. Res. Space Phys. 117 , A04201 (2012)
  • X. Q. Li, X. Y. Wen, Z. H. An, et al. The technology for detection of gamma-ray burst with GECAM satellite[J]. Radiation Detection Technology and Methods, 2022, 6(1): 12-25. DOI: 10.1007/s41605-021-00288-z
    Citation: X. Q. Li, X. Y. Wen, Z. H. An, et al. The technology for detection of gamma-ray burst with GECAM satellite[J]. Radiation Detection Technology and Methods, 2022, 6(1): 12-25. DOI: 10.1007/s41605-021-00288-z
  • Cited by

    Periodical cited type(22)

    1. D. Xu, L. Shi, S. Chen, et al. A Dynamically Reconfigurable Readout Scheme of a Pixel Readout ASIC for Space X-Ray Imaging. IEEE Transactions on Nuclear Science, 2025, 72(4): 1620. DOI:10.1109/TNS.2025.3541589
    2. Hui Sun, Chenwei Wang, Jun Yang, et al. Magnetar emergence in a peculiar gamma-ray burst from a compact star merger. National Science Review, 2025, 12(3) DOI:10.1093/nsr/nwae401
    3. Sheng-Lun Xie, Ce Cai, Yun-Wei Yu, et al. GECAM Observations of the Galactic Magnetar SGR J1935+2154 during the 2021 and 2022 Burst Active Episodes. I. Burst Catalog. The Astrophysical Journal Supplement Series, 2025, 277(1): 5. DOI:10.3847/1538-4365/ada6a9
    4. Ce Cai, Yan-Qiu Zhang, Shao-Lin Xiong, et al. Energetic Transients Joint Analysis System for Multi-INstrument (ETJASMIN) for GECAM. II. Search, Verification, and Classification of Bursts. The Astrophysical Journal Supplement Series, 2025, 277(1): 9. DOI:10.3847/1538-4365/adacdf
    5. Ce Cai, Yan-Qiu Zhang, Shao-Lin Xiong, et al. The GECAM ground search system for gamma-ray transients. Science China Physics, Mechanics & Astronomy, 2025, 68(3) DOI:10.1007/s11433-024-2544-3
    6. Chenwei Wang, Juan Zhang, Shijie Zheng, et al. Simulation of the in-flight background and performance of DRO/GTM. Experimental Astronomy, 2024, 57(3) DOI:10.1007/s10686-024-09946-8
    7. FuChang Zuo, YongQiang Shi, JianWu Chen, et al. Design and technology review of the solar X-ray detector onboard the Macao Science Satellite-1B. Science China Technological Sciences, 2024, 67(11): 3365. DOI:10.1007/s11431-023-2699-0
    8. Yan-Qiu Zhang, Haoxiang Lin, Shao-Lin Xiong, et al. Relation between the keV–MeV and TeV Emission of GRB 221009A and Its Implications. The Astrophysical Journal Letters, 2024, 972(2): L25. DOI:10.3847/2041-8213/ad6df8
    9. R. Moradi, C. W. Wang, B. 冰 Zhang 张, et al. Temporal and Spectral Analysis of the Unique and Second-brightest Gamma-Ray Burst GRB 230307A: Insights from GECAM and Fermi/GBM Observations. The Astrophysical Journal, 2024, 977(2): 155. DOI:10.3847/1538-4357/ad8a64
    10. Pei-Yi Feng, Zheng-Hua An, Da-Li Zhang, et al. Detector performance of the Gamma-ray Transient Monitor onboard DRO-A satellite. Science China Physics, Mechanics & Astronomy, 2024, 67(11) DOI:10.1007/s11433-024-2458-9
    11. Rui Qiao, Dong-Ya Guo, Wen-Xi Peng, et al. In-flight Energy Calibration of the GECAM Gamma-ray Detectors. Research in Astronomy and Astrophysics, 2024, 24(10): 104005. DOI:10.1088/1674-4527/ad4103
    12. Yan-Qiu Zhang, Shao-Lin Xiong, Ji-Rong Mao, et al. Observation of spectral lines in the exceptional GRB 221009A. Science China Physics, Mechanics & Astronomy, 2024, 67(8) DOI:10.1007/s11433-023-2381-0
    13. Yi Zhao, Wangchen Xue, Shaolin Xiong, et al. A Localization Method of High Energy Transients for All-sky Gamma-ray Monitor. Research in Astronomy and Astrophysics, 2024, 24(10): 104003. DOI:10.1088/1674-4527/ad683b
    14. Chao Zheng, Zheng-Hua An, Wen-Xi Peng, et al. Ground calibration of Gamma-Ray Detectors of GECAM-C. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1059: 169009. DOI:10.1016/j.nima.2023.169009
    15. Wang-Chen Xue, Xiao-Bo Li, Shao-Lin Xiong, et al. Neutral Atmospheric Density Measurement Using Insight-HXMT Data by the Earth Occultation Technique. The Astrophysical Journal Supplement Series, 2023, 264(1): 5. DOI:10.3847/1538-4365/ac9f16
    16. Jian-Jian He, Zheng-Hua An, Wen-Xi Peng, et al. Ground-based calibration and characterization of LaBr3-SiPM-based gamma-ray detector on GECAM satellite: 8–160 keV. Monthly Notices of the Royal Astronomical Society, 2023, 525(3): 3399. DOI:10.1093/mnras/stad2439
    17. Dali Zhang, Chao Zheng, Jiacong Liu, et al. The performance of SiPM-based gamma-ray detector (GRD) of GECAM-C. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1056: 168586. DOI:10.1016/j.nima.2023.168586
    18. Y. Zhao, J. C. Liu, S. L. Xiong, et al. The First GECAM Observation Results on Terrestrial Gamma‐Ray Flashes and Terrestrial Electron Beams. Geophysical Research Letters, 2023, 50(14) DOI:10.1029/2022GL102325
    19. Yi Zhao, Wang-Chen Xue, Shao-Lin Xiong, et al. GECAM Localization of High-energy Transients and the Systematic Error. The Astrophysical Journal Supplement Series, 2023, 265(1): 17. DOI:10.3847/1538-4365/acafeb
    20. Sheng-Lun Xie, Ce Cai, Shao-Lin Xiong, et al. Revisit the periodicity of SGR J1935+2154 bursts with updated sample. Monthly Notices of the Royal Astronomical Society, 2022, 517(3): 3854. DOI:10.1093/mnras/stac2918
    21. Y. Q. Liu, K. Gong, X. Q. Li, et al. The data acquisition algorithm designed for the SiPM-based detectors of GECAM satellite. Radiation Detection Technology and Methods, 2022, 6(1): 70. DOI:10.1007/s41605-021-00311-3
    22. Martin J. Dyer, Kendall Ackley, Felipe Jiménez Ibarra, et al. The Gravitational-wave Optical Transient Observer (GOTO). Ground-based and Airborne Telescopes X, DOI:10.1117/12.3018305

    Other cited types(0)

Catalog

    Article views (31) PDF downloads (0) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return