X
Advanced Search

A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation

Funds: 

This work was supported by the National Natural Science Foundation of China (Grant No. U2067206 and No. U1932162).

More Information
  • Received Date: October 04, 2021
  • Revised Date: January 11, 2022
  • Accepted Date: January 16, 2022
  • Available Online: October 17, 2022
  • Published Date: February 24, 2022
  • Purpose The research focuses on the related designing and simulating the high-position-resolution trajectory detector system based on cosmic ray muon tomography.
    Methods The energy deposition of muon in the detector varies with the length of the ionization path.
    Results The simulation of the submillimeter detector system was designed for muon imaging. The optimal position resolution of the detector reached 0.6 mm.
    Conclusions The entire research process includes the selection of analysis of parameters affecting system design, designing of two high-position-resolution detectors based on plastic scintillators, implementation of different imaging algorithms and image quality assessment based on different imaging models. It provides a solution based on high positional resolution plastic scintillator detectors for cosmic ray muon scattering imaging.
  • [1]
    S.I. Eidelman, “Interactions of particles and radiation with matter in handbook of particle detection and imaging (Springer, New York, 2011)
    [2]
    K. Morishima et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Publ. Group 552(7685), 386–390 (2017). https://doi.org/10.1038/nature24647
    [3]
    L.J. Schultz, Cosmic ray muon radiography (Portland State University, 2003)
    [4]
    C.M. Liu, Q.G. Wen, Z.Y. Zhang, G.S. Huang, Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system. Radiation Detect Technol Methods (2020). https://doi.org/10.1007/s41605-020-00179-9
    [5]
    K. Gnanvo, L.V. Grasso, M. Hohlmann, J.B. Locke, A. Quintero, D. Mitra, Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 652(1), 16–20 (2011). https://doi.org/10.1016/j.nima.2011.01.163
    [6]
    W.C. Priedhorsky et al., Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74(10), 4294–4297 (2003). https://doi.org/10.1063/1.1606536
    [7]
    X. Wang et al., The cosmic ray muon tomography facility based on large scale MRPC detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 784, 390–393 (2015). https://doi.org/10.1016/j.nima.2015.01.024
    [8]
    J. Pan et al., “Position Encoding Readout Electronics of Large Area Micromegas Detectors aiming for Cosmic Ray Muon Imaging,” 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, pp. 1–5, 2019, doi: https://doi.org/10.1109/NSS/MIC42101.2019.9060024
    [9]
    S. Basnet et al., Towards portable muography with small-area, gas-tight glass resistive plate chambers. J. Instrumentation 15, 10 (2020). https://doi.org/10.1088/1748-0221/15/10/C10032
    [10]
    V. Anghel et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 12–23 (2015). https://doi.org/10.1016/j.nima.2015.06.054
    [11]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, Geant 4 — a simulation toolkit. Nucl. Phys. News 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
    [12]
    C. Hagmann, D. Lange, and D. Wright, “Cosmic-ray shower generator (CRY) for Monte Carlo transport codes,” IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1143–1146, 2007, doi: https://doi.org/10.1109/NSSMIC.2007.4437209
    [13]
    L.J. Schultz et al., Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16(8), 1985–1993 (2007). https://doi.org/10.1109/TIP.2007.901239
    [14]
    K.A. Olive et al., Review of particle physics. Chinese Phys. C 38, 9 (2014). https://doi.org/10.1088/1674-1137/38/9/090001
    [15]
    J.W. Motz, H. Olsen, H.W. Koch, Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36(4), 881–928 (1964). https://doi.org/10.1103/RevModPhys.36.881
    [16]
    G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res., B 58(1), 6–10 (1991). https://doi.org/10.1016/0168-583X(91)95671-Y
    [17]
    C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169(1), 201–204 (1968). https://doi.org/10.1103/PhysRev.169.201
    [18]
    L.J. Schultz et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 519(3), 687–694 (2004). https://doi.org/10.1016/j.nima.2003.11.035
    [19]
    X.-D. Wang et al., “The Study of Cosmic Ray Tomography Using Multiple Scattering of Muons for Imaging of High-Z Materials,” vol. XX, no. 12, pp. 1–11, 2016, [Online]. Available: http://arxiv.org/abs/1608.01160.
    [20]
    C.J. Benton, N.D. Smith, S.J. Quillin, C.A. Steer, Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nucl. Inst. Methods Phys. Res., A 693, 154–159 (2012). https://doi.org/10.1016/j.nima.2012.07.008
    [21]
    H. Yi et al., “Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography,” 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, pp. 1–4, 2016, doi: https://doi.org/10.1109/NSSMIC.2014.7431084
  • Related Articles

    [1]Vaishali M. Thakur, Nitin Bhosale, Amit Jain, Mukesh Sharma, L. M. Chaudhari, Probal Chaudhury. Plastic scintillator detector for qualitative and quantitative measurements of gamma radiation[J]. Radiation Detection Technology and Methods, 2023, 7(4): 578-588. doi: 10.1007/s41605-023-00413-0
    [2]Jun He, Yanfeng Sui, Yong Li, Yaoyao Du, Linda Yu, Junhui Yue, Jianshe Cao, Xujian Wang, Zhe Duan, Ouzheng Xiao. Electro-mechanical offset measurements of beam position monitors[J]. Radiation Detection Technology and Methods, 2023, 7(2): 288-296. doi: 10.1007/s41605-023-00389-x
    [3]Lin Zhu, Jian-rong Zhou, Xin-feng Jiang, Xiao-juan Zhou, Wen-qin Yang, Yuan-Guang Xia, Liang Xiao, Hong Luo, Bei-ju Guan, Yan-feng Wang, Hong Xu, Pei-xun Shen, Hai-yun Teng, Jia-jie Li, Gui-an Yang, Ju-ping Xu, Huai-can Chen, Song-lin Wang, Jian Zhuang, Jun-rong Zhang, Wen Yin, Zhi-jia Sun, Yuan-bo Chen, Tianjiao Liang. Development of 3He-filled linear position-sensitive detector for neutron scattering instruments at CSNS[J]. Radiation Detection Technology and Methods, 2023, 7(1): 100-106. doi: 10.1007/s41605-022-00367-9
    [4]Jikang Fan, Jian Zhang, Haiying Xu, Yong Peng, Xinghua Sang, Qi Zhou, Kehong Wang. Influence of the cathode position on beam current characteristics in the thermionic electron gun[J]. Radiation Detection Technology and Methods, 2022, 6(3): 401-408. doi: 10.1007/s41605-022-00335-3
    [5]Ya-Ping Wang, Chao Hou, Xiang-Dong Sheng, Shao-Hui Feng, Hong-Kui Lv, Jia Liu, Jing Zhao, Xiao-Peng Zhang, Quan-Bu Gou. Testing and analysis of the plastic scintillator units for LHAASO-ED[J]. Radiation Detection Technology and Methods, 2021, 5(4): 513-519. doi: 10.1007/s41605-021-00274-5
    [6]Peng Hu, Zhi-gang Wang, Fabio Gargano, Francesca Alemanno, Corrado Altomare, Tian-wei Bao, Yong-wei Dong, Valerio Formato, Dimitrios Kyratzis, Nicola Mori, Lorenzo Pacini, Zheng Quan, Davide Serini, Jun-jing Wang, Rui-jie Wang, Ming Xu, Bo-bing Wu. A preliminary simulation study of influence of backsplash on the plastic scintillator detector design in HERD experiment[J]. Radiation Detection Technology and Methods, 2021, 5(3): 332-338. doi: 10.1007/s41605-021-00245-w
    [7]Yushuang Zheng, Qiong Xu, Yi Zou, Yan Li, Shuangquan Liu, Cunfeng Wei, Long Wei. Position coordinates-based iterative reconstruction for robotic CT[J]. Radiation Detection Technology and Methods, 2021, 5(1): 136-152. doi: 10.1007/s41605-020-00230-9
    [8]Jian-Cheng He, Yu-Hua Yao, Zhen Wang, Tian-Lu Chen, Dan-Zeng-Luo-Bu, Cun-Feng Feng, Youliang Feng, Qi Gao, Yi-Qin Guo, Ying-Ying Guo, Hong-Bo Hu, Xing-Tao Huang, Cheng Liu, Mao-Yuan Liu, Yi-Bin Pan, Bing-Qiang Qiao, Guang-Guang Xin, Xue-Yao Zhang, Yi Zhang, Shi-Ping Zhao. 100 TeV diffuse γ-rays observation by YangBaJing Hybrid Array[J]. Radiation Detection Technology and Methods, 2020, 4(3): 392-398. doi: 10.1007/s41605-020-00198-6
    [9]Feng Shi, Junguang Lv, Xiao Cai, Lijun Sun, Jian Fang. Evaluation of a position-sensitive prototype detector unit for fast neutron imaging and spectroscopy[J]. Radiation Detection Technology and Methods, 2020, 4(2): 222-240. doi: 10.1007/s41605-020-00175-z
    [10]Xuerui Hao, Zhongquan Li, Pei Zhang, Fanbo Meng. HOM coupler design for 166.6 MHz SC cavity[J]. Radiation Detection Technology and Methods, 2019, 3(3): 31-31. doi: 10.1007/s41605-019-0111-5
  • Jiajia Zhai, Haohui Tang, Xianchao Huang, et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. DOI: 10.1007/s41605-022-00313-9
    Citation: Jiajia Zhai, Haohui Tang, Xianchao Huang, et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. DOI: 10.1007/s41605-022-00313-9
  • Cited by

    Periodical cited type(2)

    1. Zhenyu Wang, Zhiyuan Li, Lukai Wang, et al. Performance Simulation of Muon Detectors Based on Structural Design and Array Layout of Plastic Scintillators. Journal of Instrumentation, 2024, 19(08): P08006. DOI:10.1088/1748-0221/19/08/P08006
    2. Meichan Feng, Daowu Li, Xingming Fan, et al. Evaluation of plastic scintillating fibers coating technique for muon imaging detector using a Compton-coincidence-technique system. Journal of Instrumentation, 2023, 18(07): P07025. DOI:10.1088/1748-0221/18/07/P07025

    Other cited types(0)

Catalog

    Article views (8) PDF downloads (0) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return