[1] |
S.I. Eidelman, “Interactions of particles and radiation with matter in handbook of particle detection and imaging (Springer, New York, 2011)
|
[2] |
K. Morishima et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Publ. Group 552(7685), 386–390 (2017). https://doi.org/10.1038/nature24647
|
[3] |
L.J. Schultz, Cosmic ray muon radiography (Portland State University, 2003)
|
[4] |
C.M. Liu, Q.G. Wen, Z.Y. Zhang, G.S. Huang, Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system. Radiation Detect Technol Methods (2020). https://doi.org/10.1007/s41605-020-00179-9
|
[5] |
K. Gnanvo, L.V. Grasso, M. Hohlmann, J.B. Locke, A. Quintero, D. Mitra, Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 652(1), 16–20 (2011). https://doi.org/10.1016/j.nima.2011.01.163
|
[6] |
W.C. Priedhorsky et al., Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74(10), 4294–4297 (2003). https://doi.org/10.1063/1.1606536
|
[7] |
X. Wang et al., The cosmic ray muon tomography facility based on large scale MRPC detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 784, 390–393 (2015). https://doi.org/10.1016/j.nima.2015.01.024
|
[8] |
J. Pan et al., “Position Encoding Readout Electronics of Large Area Micromegas Detectors aiming for Cosmic Ray Muon Imaging,” 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, pp. 1–5, 2019, doi: https://doi.org/10.1109/NSS/MIC42101.2019.9060024
|
[9] |
S. Basnet et al., Towards portable muography with small-area, gas-tight glass resistive plate chambers. J. Instrumentation 15, 10 (2020). https://doi.org/10.1088/1748-0221/15/10/C10032
|
[10] |
V. Anghel et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 12–23 (2015). https://doi.org/10.1016/j.nima.2015.06.054
|
[11] |
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, Geant 4 — a simulation toolkit. Nucl. Phys. News 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
|
[12] |
C. Hagmann, D. Lange, and D. Wright, “Cosmic-ray shower generator (CRY) for Monte Carlo transport codes,” IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1143–1146, 2007, doi: https://doi.org/10.1109/NSSMIC.2007.4437209
|
[13] |
L.J. Schultz et al., Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16(8), 1985–1993 (2007). https://doi.org/10.1109/TIP.2007.901239
|
[14] |
K.A. Olive et al., Review of particle physics. Chinese Phys. C 38, 9 (2014). https://doi.org/10.1088/1674-1137/38/9/090001
|
[15] |
J.W. Motz, H. Olsen, H.W. Koch, Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36(4), 881–928 (1964). https://doi.org/10.1103/RevModPhys.36.881
|
[16] |
G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res., B 58(1), 6–10 (1991). https://doi.org/10.1016/0168-583X(91)95671-Y
|
[17] |
C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169(1), 201–204 (1968). https://doi.org/10.1103/PhysRev.169.201
|
[18] |
L.J. Schultz et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 519(3), 687–694 (2004). https://doi.org/10.1016/j.nima.2003.11.035
|
[19] |
X.-D. Wang et al., “The Study of Cosmic Ray Tomography Using Multiple Scattering of Muons for Imaging of High-Z Materials,” vol. XX, no. 12, pp. 1–11, 2016, [Online]. Available: http://arxiv.org/abs/1608.01160.
|
[20] |
C.J. Benton, N.D. Smith, S.J. Quillin, C.A. Steer, Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nucl. Inst. Methods Phys. Res., A 693, 154–159 (2012). https://doi.org/10.1016/j.nima.2012.07.008
|
[21] |
H. Yi et al., “Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography,” 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, pp. 1–4, 2016, doi: https://doi.org/10.1109/NSSMIC.2014.7431084
|
Citation: | Jiajia Zhai, Haohui Tang, Xianchao Huang, et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. DOI: 10.1007/s41605-022-00313-9 |
1. | Dongqing Zhao, Pengfei Li, Linyang Li. Cosmic Ray Muon Navigation for Subsurface Environments: Technologies and Challenges. Particles, 2025, 8(2): 46. DOI:10.3390/particles8020046 |
2. | Zhenyu Wang, Zhiyuan Li, Lukai Wang, et al. Performance Simulation of Muon Detectors Based on Structural Design and Array Layout of Plastic Scintillators. Journal of Instrumentation, 2024, 19(08): P08006. DOI:10.1088/1748-0221/19/08/P08006 |
3. | Jiajia Zhai, Meichan Feng, Bin Pan, et al. Compact cosmic ray muon scattering imaging system based on plastic scintillating fibers. Journal of Instrumentation, 2024, 19(12): P12016. DOI:10.1088/1748-0221/19/12/P12016 |
4. | Meichan Feng, Daowu Li, Xingming Fan, et al. Evaluation of plastic scintillating fibers coating technique for muon imaging detector using a Compton-coincidence-technique system. Journal of Instrumentation, 2023, 18(07): P07025. DOI:10.1088/1748-0221/18/07/P07025 |