X
Advanced Search

A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation

Funds: 

This work was supported by the National Natural Science Foundation of China (Grant No. U2067206 and No. U1932162).

More Information
  • Received Date: October 04, 2021
  • Revised Date: January 11, 2022
  • Accepted Date: January 16, 2022
  • Available Online: October 17, 2022
  • Published Date: February 24, 2022
  • Purpose The research focuses on the related designing and simulating the high-position-resolution trajectory detector system based on cosmic ray muon tomography.
    Methods The energy deposition of muon in the detector varies with the length of the ionization path.
    Results The simulation of the submillimeter detector system was designed for muon imaging. The optimal position resolution of the detector reached 0.6 mm.
    Conclusions The entire research process includes the selection of analysis of parameters affecting system design, designing of two high-position-resolution detectors based on plastic scintillators, implementation of different imaging algorithms and image quality assessment based on different imaging models. It provides a solution based on high positional resolution plastic scintillator detectors for cosmic ray muon scattering imaging.
  • [1]
    S.I. Eidelman, “Interactions of particles and radiation with matter in handbook of particle detection and imaging (Springer, New York, 2011)
    [2]
    K. Morishima et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Publ. Group 552(7685), 386–390 (2017). https://doi.org/10.1038/nature24647
    [3]
    L.J. Schultz, Cosmic ray muon radiography (Portland State University, 2003)
    [4]
    C.M. Liu, Q.G. Wen, Z.Y. Zhang, G.S. Huang, Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system. Radiation Detect Technol Methods (2020). https://doi.org/10.1007/s41605-020-00179-9
    [5]
    K. Gnanvo, L.V. Grasso, M. Hohlmann, J.B. Locke, A. Quintero, D. Mitra, Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 652(1), 16–20 (2011). https://doi.org/10.1016/j.nima.2011.01.163
    [6]
    W.C. Priedhorsky et al., Detection of high-Z objects using multiple scattering of cosmic ray muons. Rev. Sci. Instrum. 74(10), 4294–4297 (2003). https://doi.org/10.1063/1.1606536
    [7]
    X. Wang et al., The cosmic ray muon tomography facility based on large scale MRPC detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 784, 390–393 (2015). https://doi.org/10.1016/j.nima.2015.01.024
    [8]
    J. Pan et al., “Position Encoding Readout Electronics of Large Area Micromegas Detectors aiming for Cosmic Ray Muon Imaging,” 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019, pp. 1–5, 2019, doi: https://doi.org/10.1109/NSS/MIC42101.2019.9060024
    [9]
    S. Basnet et al., Towards portable muography with small-area, gas-tight glass resistive plate chambers. J. Instrumentation 15, 10 (2020). https://doi.org/10.1088/1748-0221/15/10/C10032
    [10]
    V. Anghel et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer. Nucl. Instrum. Methods Phys. Res., Sect. A 798, 12–23 (2015). https://doi.org/10.1016/j.nima.2015.06.054
    [11]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, Geant 4 — a simulation toolkit. Nucl. Phys. News 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
    [12]
    C. Hagmann, D. Lange, and D. Wright, “Cosmic-ray shower generator (CRY) for Monte Carlo transport codes,” IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1143–1146, 2007, doi: https://doi.org/10.1109/NSSMIC.2007.4437209
    [13]
    L.J. Schultz et al., Statistical reconstruction for cosmic ray muon tomography. IEEE Trans. Image Process. 16(8), 1985–1993 (2007). https://doi.org/10.1109/TIP.2007.901239
    [14]
    K.A. Olive et al., Review of particle physics. Chinese Phys. C 38, 9 (2014). https://doi.org/10.1088/1674-1137/38/9/090001
    [15]
    J.W. Motz, H. Olsen, H.W. Koch, Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys. 36(4), 881–928 (1964). https://doi.org/10.1103/RevModPhys.36.881
    [16]
    G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering. Nucl. Inst. Methods Phys. Res., B 58(1), 6–10 (1991). https://doi.org/10.1016/0168-583X(91)95671-Y
    [17]
    C.T. Case, E.L. Battle, Molière’s theory of multiple scattering. Phys. Rev. 169(1), 201–204 (1968). https://doi.org/10.1103/PhysRev.169.201
    [18]
    L.J. Schultz et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods Phys. Res., Sect. A 519(3), 687–694 (2004). https://doi.org/10.1016/j.nima.2003.11.035
    [19]
    X.-D. Wang et al., “The Study of Cosmic Ray Tomography Using Multiple Scattering of Muons for Imaging of High-Z Materials,” vol. XX, no. 12, pp. 1–11, 2016, [Online]. Available: http://arxiv.org/abs/1608.01160.
    [20]
    C.J. Benton, N.D. Smith, S.J. Quillin, C.A. Steer, Most probable trajectory of a muon in a scattering medium, when input and output trajectories are known. Nucl. Inst. Methods Phys. Res., A 693, 154–159 (2012). https://doi.org/10.1016/j.nima.2012.07.008
    [21]
    H. Yi et al., “Bayesian-theory-based most probable trajectory reconstruction algorithm in cosmic ray muon tomography,” 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014, pp. 1–4, 2016, doi: https://doi.org/10.1109/NSSMIC.2014.7431084
  • Jiajia Zhai, Haohui Tang, Xianchao Huang, et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. DOI: 10.1007/s41605-022-00313-9
    Citation: Jiajia Zhai, Haohui Tang, Xianchao Huang, et al. A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation[J]. Radiation Detection Technology and Methods, 2022, 6(2): 244-253. DOI: 10.1007/s41605-022-00313-9
  • Cited by

    Periodical cited type(4)

    1. Dongqing Zhao, Pengfei Li, Linyang Li. Cosmic Ray Muon Navigation for Subsurface Environments: Technologies and Challenges. Particles, 2025, 8(2): 46. DOI:10.3390/particles8020046
    2. Zhenyu Wang, Zhiyuan Li, Lukai Wang, et al. Performance Simulation of Muon Detectors Based on Structural Design and Array Layout of Plastic Scintillators. Journal of Instrumentation, 2024, 19(08): P08006. DOI:10.1088/1748-0221/19/08/P08006
    3. Jiajia Zhai, Meichan Feng, Bin Pan, et al. Compact cosmic ray muon scattering imaging system based on plastic scintillating fibers. Journal of Instrumentation, 2024, 19(12): P12016. DOI:10.1088/1748-0221/19/12/P12016
    4. Meichan Feng, Daowu Li, Xingming Fan, et al. Evaluation of plastic scintillating fibers coating technique for muon imaging detector using a Compton-coincidence-technique system. Journal of Instrumentation, 2023, 18(07): P07025. DOI:10.1088/1748-0221/18/07/P07025

    Other cited types(0)

Catalog

    Article views (9) PDF downloads (0) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return