[1] |
P. Blasi, Recent results in cosmic ray physics and their interpretation. Braz. J. Phys. 44 , 426–440 (2014)
|
[2] |
I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53 , 199 (2015)
|
[3] |
P. Blasi, The origin of galactic cosmic rays. Astron. Astrophys. Rev. 21 , 70 (2013)
|
[4] |
A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57 , 285 (2007)
|
[5] |
A.D. Panov et al., (ATIC Collaboration), energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: final results. Bull. Russ. Acad. Sci. Phys. 73 , 564 (2009)
|
[6] |
H.S. Ahn et al., (CREAM Collaboration), Discrepant hardening observed in cosmic-ray elemental spectra. Astrophys. J. Lett. 714 , L89 (2010)
|
[7] |
Y.S. Yoon et al., (CREAM Collaboration), Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J. Lett 839 , 1 (2017)
|
[8] |
E. Atkin et al., (NUCLEON Collaboration), first results of the cosmic ray NUCLEON experiment. Cosmol. Astropart. Phys. 07 , 020 (2017)
|
[9] |
F. Alemanno et al., (DAMPE Collaboration), measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission. Phys. Rev. Lett. 126 , 201102 (2021)
|
[10] |
G.D. Lafferty, T.R. Wyatt, Where to stick your data points: the treatment of measurements within wide bins. Nucl. Instrum. Methods Phys. Res. Sect. A 355 , 541 (1995)
|
[11] |
M. Aguilar et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 114 , 171103 (2015)
|
[12] |
J. Berdugo, V. Choutko, C. Delgado, Q. Yan, Determination of the rigidity scale of the Alpha Magnetic Spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A 869 , 10 (2017)
|
[13] |
O. Adriani et al., (CALET Collaboration), Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station. Phys. Rev. Lett. 122 , 181102 (2019)
|
[14] |
I.P. Ivanenko et al., Energy spectra of cosmic rays above 2 TeV as measured by the 'SOKOL' Apparatus. 23rd International Cosmic Ray Conference (ICRC23), vol. 2 (1993), p. 17
|
[15] |
A. Obermeier, M. Ave, P. Boyle, Ch. Höppner, J. Hörandel, D. Müller, Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER. Astrophys. J. 742 , 14 (2011)
|
[16] |
A. Kounine, The alpha magnetic spectrometer on the international space station. Int. J. Mod. Phys. E 21 , 1230005 (2012)
|
[17] |
C. Adloff et al., The AMS-02 lead-scintillating fibres electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. Sect. A 714 , 147 (2013)
|
[18] |
J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835 , 186–225 (2016)
|
[19] |
M. Aguilar et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 115 , 211101 (2015)
|
[20] |
G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. Sect. A 362 , 487 (1995)
|
Citation: | Feng-ze Zhang, Zhi-Cheng Tang, Zu-Hao Li, et al. Cosmic-ray helium nuclei measurement with the calorimeter of the Alpha Magnetic Spectrometer[J]. Radiation Detection Technology and Methods, 2022, 6(3): 427-432. DOI: 10.1007/s41605-022-00336-2 |