[1] |
J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion a ccelerator facility (HIAF) in China. Nucl. Instrum. Methods Phy s. Res. 317, 263 (2013). https://doi.org/10.1016/j.nimb.2013.08.046
|
[2] |
W.H. Hayt, Solutions Manual to Accompany Engineering Electromagnetics, 4th edn. (McGraw-Hill Book Co., New York, NY, 1981)
|
[3] |
A.W. Booth, A. Hanekom, Why correctly engineered cable cleatsare vital for effective power system protection, in 10th IET International Conference on Developments in Power System Protection. Managing the Change, pp. 1–5 (2010). https://doi.org/10.1049/cp.2010.0362
|
[4] |
A. Booth, Why cable cleats are vitally important in the protection of a cable installation. IET Conf. Reliab. Transm. Distrib. Netw. (2011). https://doi.org/10.1049/cp.2011.0528
|
[5] |
C.A. Darnell, M.L. Bacon, R.A. Shaw, Cable cleats-a global technique to protect three-phase single conductor cables during short-circuits, in Fifty-First Annual Conference 2004 Petroleum and Chemical Industry Technical Conference, pp. 143–150 (2004). https://doi.org/10.1109/PCICON.2004.1352791
|
[6] |
D.A. Weston, Electromagnetic Compatibility: Principles and Applications, 2nd edn. (CRC Press, Boca Raton, 2001)
|
[7] |
H.Y. Liu, N. Liu, L.J. Pu et al., ANSYS based analysis on shortcircuitforce and mechanical stress of cleats for high voltage large cross-sectional cables. Trans. China Electrotech. Soc. 31(5), 170–176 (2016). https://doi.org/10.3969/j.issn.1000-6753.2016.05.021
|
[8] |
W. Ruger, G. Hosemann, Mechanical short-circuit effects of single-core cables. IEEE Trans. Power Deliv. 4(1), 68–74 (1989). https://doi.org/10.1109/61.19189
|
[9] |
X. Wang, C.C. Wang, K. Wu et al., An improved optimal designscheme for high voltage cable accessories. IEEE Trans. Dielectr. Electr. Insul. 21(1), 5–15 (2014). https://doi.org/10.1109/TDEI.2013.004102
|
[10] |
M. Steurer, K. Fröhlich, The impact of inrush currents on the mechanical stress of high voltage power transformer coils. IEEE Trans. Power Deliv. 17(1), 155–160 (2002). https://doi.org/10.1109/61.974203
|
[11] |
A.A. Adly, Computation of inrush current forces on transformer windings. IEEE Trans. Magn. 37(4), 2855–2857 (2001). https://doi.org/10.1109/20.951327
|
[12] |
H.J. Zhang, B. Yang, W.J. Xu et al., Dynamic deformation analysis of power transformer windings in short-circuit fault by FEM. IEEE Trans. Appl. Supercond. 24(3), 0502204 (2014). https://doi.org/10.1109/TASC.2013.2285335
|
[13] |
Y.Q. Liu, S.H. Wang, X.J. Meng et al., Kinetic characteristics of transformer windings under short circuit condition. Int. J. Appl. Electrom. Mech. 33(1–2), 457–464 (2010). https://doi.org/10.3233/JAE-2010-1145
|
[14] |
H.M. Ahn, Y.H. Oh, J.K. Kim et al., Experimental verificationand finite element analysis of short-circuit electromagnetic force for dry-type transformer. IEEE Trans. Magn. 48(2), 819–822 (2012). https://doi.org/10.1109/TMAG.2011.2174212
|
[15] |
H.M. Ahn, J.Y. Lee, J.K. Kim et al., Finite-element analysis ofshort-circuit electromagnetic force in power transformer. IEEE Trans. Ind. Appl. 47(3), 1267–1272 (2011). https://doi.org/10.1109/TIA.2011.2126031
|
[16] |
A. Benhama, A.C. Williamson, A.B.J. Reece, Computation of electromagnetic forces from finite element field solutio ns, in 1996 Third International Conference on Computati on in Electromagnetics, pp. 247–252 (1996). https://doi.org/10.1049/CP:19960193
|
[17] |
Swanson Analysis System, Inc., “ANSYS Academic Research.”Ansys.com. http://www.ansys.com (accessed Sep. 18, 2022)
|
[18] |
Y.J. Yu, X.X. Wang, Z.H. Chen, A simplified finite element model for structural cable bending mechanism. Int. J. Mech. Sci. 113, 196–210 (2016). https://doi.org/10.1016/j.ijmecsci.2016.05.004
|
[19] |
F.P. Nasution, S. Sævik, S. Berge, Experimental and finiteelement analysis of fatigue strength for 300mm2 copper power conductor. Mar. Struct. 39, 225–254 (2014). https://doi.org/10.1016/j.marstruc.2014.07.005
|
[20] |
H. Böhme, F. Golletz, C. Fiebiger, Mechanical stress in high-voltage switchgear with flexible single conductors under short-circuit current load. Eur. Trans. Electr. Power. 1, 31–35 (1991). https://doi.org/10.1002/etep.4450010108
|
[1] | Lihua Huo, Jinhui Chen, Guanwen Wang, Lei Wang, Yuemei Peng, Zhe Duan, Yuanyuan Guo, Guanjian Wu, Xinzhe Zhai. Development of the pulse bump magnet in HEPS[J]. Radiation Detection Technology and Methods, 2023, 7(4): 521-530. doi: 10.1007/s41605-023-00419-8 |
[2] | Ren Hang, Yang Jiancheng, Shen Guodong, Wang Geng, Yao Liping, Ruan Shuang, Sheng Lina, Wu Junxia, Zhao He, Liu Jie, Cai Fucheng, Gao Yunzhe, Chang Mingxuan, Li Minxiang. A new multi-turn beam dump scheme design and simulation for HIAF-BRing machine protection[J]. Radiation Detection Technology and Methods, 2022, 6(4): 530-539. doi: 10.1007/s41605-022-00353-1 |
[3] | Jikang Fan, Jian Zhang, Haiying Xu, Yong Peng, Xinghua Sang, Qi Zhou, Kehong Wang. Influence of the cathode position on beam current characteristics in the thermionic electron gun[J]. Radiation Detection Technology and Methods, 2022, 6(3): 401-408. doi: 10.1007/s41605-022-00335-3 |
[4] | Yunzhe Gao, Shuang Ruan, Geng Wang, Guimei Ma, Yue Li, Jiancheng Yang, Jiawen Xia, Jie Liu, Jie Gao, Yang Li, Xiaoqiang Chen, Weiping Chai, Guodong Shen, Liping Yao, Fucheng Cai, Hang Ren, Qiyu Kong, Minxiang Li. The multi-phased beam dump scheme in BRing at the HIAF[J]. Radiation Detection Technology and Methods, 2022, 6(1): 111-121. doi: 10.1007/s41605-021-00304-2 |
[5] | Yanke Cai, Jie Zhang, Yunhua Sun, Fengfan Yang, Xiaoshan Jiang, Changge Zi, Cong He, Shanshan Cui. The novel transmission scheme with CAT Ethernet cable and SFP for White Rabbit[J]. Radiation Detection Technology and Methods, 2021, 5(2): 290-296. doi: 10.1007/s41605-021-00247-8 |
[6] | Shuo Wang, Zhongtao Shen, Shuwen Wang, Changqing Feng, Shubin Liu. Clock and data alignment scheme for readout electronics prototype of PandaX-nT[J]. Radiation Detection Technology and Methods, 2021, 5(2): 161-167. doi: 10.1007/s41605-021-00252-x |
[7] | Xiaoyu Yang, Lei Yang, Wei He, Yatian Pei, Yuekun Heng, Xiaoyan Ma, Huafeng Li, Kaixi Huang, Caishen Wang, Yi Li, Xiaohui Qian, Zhi Wu. Research on the measurement of connecting bars’ axial force of JUNO central detector[J]. Radiation Detection Technology and Methods, 2020, 4(3): 362-371. doi: 10.1007/s41605-020-00192-y |
[8] | Kun Wang, Chang-Liang Li, Zheng-He Bai, Man-Zhou Zhang, Qing-Lei Zhang, Bo-Cheng Jiang. Longitudinal injection scheme for an ultra-low-emittance storage ring light source with a sine wave kicker[J]. Radiation Detection Technology and Methods, 2019, 3(4): 61-61. doi: 10.1007/s41605-019-0139-6 |
[9] | Ying Zhao, Yaoyao Du, Lin Wang, Jianshe Cao. Development of new beam current transformer based on TMR[J]. Radiation Detection Technology and Methods, 2019, 3(3): 51-51. doi: 10.1007/s41605-019-0131-1 |
[10] | Yong-Fei Liang, Chao-Wen Yang, Jia-Yun Xu, Ming-Ming Kang. Applications in energy spectrum measurement based on pulse fitting[J]. Radiation Detection Technology and Methods, 2019, 3(3): 24-24. doi: 10.1007/s41605-019-0096-0 |
Citation: | Runzu Zhang, Anhui Feng, Ye Liu, et al. Simulation research on cable-laying scheme of HIAF dipole power supply[J]. Radiation Detection Technology and Methods, 2023, 7(1): 149-158. DOI: 10.1007/s41605-022-00371-z |