[1] |
M.J. Cieślak, K.A.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development—A review. Radiat. Meas. 92, 59-71 (2016)
|
[2] |
K. Amgarou et al., A comprehensive experimental characterization of the iPIX gamma imager. J. Instrum. 11, P08012-P08012 (2016)
|
[3] |
O. Gal et al., Development of a portable gamma camera with coded aperture. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 563, 233-237 (2006)
|
[4] |
A.L. Mladenov, D. Stankov, T.Z. Nonova, K. Krezhov, Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre irt-sofia at inrne-bas. Radiat. Prot. Dosimetry 162, 176-181 (2014)
|
[5] |
L. Caballero et al., Gamma-ray imaging system for real-time measurements in nuclear waste characterisation. J. Instrum. 13, P03016-P03016 (2018)
|
[6] |
E. Furuta, Semi-quantitative analysis of leaf surface contamination by radioactivity from the Fukushima Daiichi nuclear power plant accident using HPGe and imaging plate. J. Radioanal. Nucl. Chem. 297, 337-342 (2013)
|
[7] |
C.G. Wahl et al., The Polaris-H imaging spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784, 377-381 (2015)
|
[8] |
R.W. Todd, J.M. Nightingale, D.B. Everett, A proposed γ camera. Nature 251, 132-134 (1974)
|
[9] |
A. Haboub, A.A. Macdowell, S. Marchesini, D.Y. Parkinson, Coded aperture imaging for fluorescent x-rays. Rev. Sci. Instrum. 85, 063704-063704 (2014)
|
[10] |
T. Collaboration. Lhc. Precision luminosity measurements at LHCb. J. Instrum. 9, P12005-P12005 (2014)
|
[11] |
A. Zoglauer, M. Galloway, M. Amman, P.N. Luke, S.E. Boggs, Aerial standoff detection with the High Efficiency Multimode Imager (HEMI). In: IEEE nuclear science symposuim & medical imaging conference 566-570 (2010), https://doi.org/https://doi.org/10.1109/NSSMIC.2010.5873824
|
[12] |
M.A. Alnafea, K. Wells, M. Guy, N.M. Spyrou, Near field corrections for coded aperture imaging in scintimammography. In: 2006 IEEE nuclear science symposium conference record. 5, 2948-2953 (2006)
|
[13] |
M. Jeong, B. Van, B.T. Wells, L.J. Dries, M.D. Hammig, Comparison between pixelated scintillators: CsI(Tl), LaCl 3(Ce) and LYSO(Ce) when coupled to a silicon photomultipliers Array. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 893, 75-83 (2018)
|
[14] |
E.E. Fenimore, T.M. Cannon, Coded aperture imaging with uniformly redundant arrays. Appl. Opt. 17, 337-347 (1978)
|
[15] |
L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113-122 (1982)
|
[16] |
D. Lazaro, Z.E. Bitar, V. Breton, D. Hill, I. Buvat, Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study. Phys. Med. Biol. 50, 3739-3754 (2005)
|
[17] |
M. Rafecas, et al. Use of a Monte-Carlo based probability matrix for 3D iterative reconstruction of MADPET-II data. In: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). 3, 1775-1779 (2003)
|
[18] |
S. Shokouhi, et al. Statistical 3D image reconstruction for the RatCAP PET tomograph using a physically accurate, Monte Carlo based system matrix. In: IEEE symposium conference record nuclear science 2004. 6, 3901-3905 (2004)
|
[19] |
K. Li et al., A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems. Phys. Med. Biol. 60, 6949-6973 (2015)
|
[20] |
M. Jeong, M.D. Hammig, Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954, 161353 (2020)
|
[21] |
Q. Liu et al., Image reconstruction using multi-energy system matrices with a scintillator-based gamma camera for nuclear security applications. Appl. Radiat. Isot. 163, 109217 (2020)
|
Citation: | Yue Yu, Xiaoli Sun, Zhiming Zhang, et al. Image reconstruction for the coded aperture system in nuclear safety and security using a Monte Carlo-based system matrix[J]. Radiation Detection Technology and Methods, 2023, 7(2): 263-270. DOI: 10.1007/s41605-023-00381-5 |
1. | Donghai Fan, Rui Wu, Dengke Wei, et al. A gamma-ray imaging method for multiple radionuclides and low-activity radioactive sources. Journal of Environmental Radioactivity, 2025, 282: 107606. DOI:10.1016/j.jenvrad.2024.107606 |
2. | Yuying Yin, Xiaopeng Zhou, Lisheng Geng. Template matching method for γ-ray localization based on coded aperture imaging. Radiation Detection Technology and Methods, 2025. DOI:10.1007/s41605-025-00531-x |
3. | JungHyun Bae, Stylianos Chatzidakis, Reshma Ughade. Emerging Radiation Detection. DOI:10.1007/978-3-031-63897-8_12 |