[1] |
F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107-113 (2015)
|
[2] |
F. Akman, I.H. Geçibesler, I. Demirkol, A. Çetin, Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can. J. Phys. 97(1), 86-92 (2019)
|
[3] |
M.R. Ambika, N. Nagaiah, V. Harish, N.K. Lokanath, M.A. Sridhar, N.M. Renukappa, S.K. Suman, Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shield. Phys. Radiat. Chem. 130, 351-358 (2017)
|
[4] |
T.E. Valentine, Evaluation of prompt fission gamma rays for use in simulating nuclear safeguard measurements. Ann. Nucl. Energy 28(3), 191-201 (2001)
|
[5] |
A. Lajtai et al., in: Proceedings of IAEA Cons. Meeting on the U-235 Fast-Neutron Fission Cross Section, and the Cf-252 Fission Neutron Spectrum, INDC(NDS)-146/1 (1983).
|
[6] |
D. Regnier, O. Litaize, O. Serot, Monte Carlo simulation of prompt fission gamma emission. Phys. Procedia 31, 59-65 (2012)
|
[7] |
M.F. Turhan, F. Akman, H. Polat, M.R. Kaçal, I. Demirkol, Gamma-ray attenuation behaviors of hematite doped polymer composites. Prog. Nucl. Energy 129, 1-12 (2020)
|
[8] |
S.M. Hulbert, K.A. Carlson, Is lead dust within nuclear medicine departments a hazard to pediatric patients? J. Nucl. Med. Technol. 37(3), 170-172 (2009)
|
[9] |
U. Gökmen, Z. Özkan, U. Taşcı, O.S. Bilge, Investigation of radiation shielding by adding Al2O3 and SiO2 into the high-speed steel composites: comparative study. Physica Scripta 97(5), 055307 (2022)
|
[10] |
Z. Özkan, U. Gökmen, O.S. Bilge, Analyses of Gamma and Neutron Attenuation Properties of the AA6082 composite material doped with boron carbide (B4C). Radiat. Phys. Chem. 206, 110810 (2023)
|
[11] |
U. Gökmen, Z. Özkan, O.S. Bilge, Impact of the gamma and neutron attenuation behaviors on the functionally graded composite materials. Physica Scripta 96(12), 125326 (2021)
|
[12] |
U. Gökmen, Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites. Nucl. Eng. Technol. 54(3), 1049-1061 (2022)
|
[13] |
F. Özkalaycı, M.R. Kaçal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead(II) chloride effects on nuclear shielding capabilities of polymer composites. J. Phys. Chem. Solids 145, 1-10 (2020)
|
[14] |
S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M. Arib, M.A. Hussein, S. Wageh, L.A. Dim, Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloy. Compd. 741, 293-299 (2018)
|
[15] |
D. Cao, G. Yang, M. Bourham, D. Moneghan, Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites. Nucl. Eng. Technol. 52, 2613-2619 (2020)
|
[16] |
M. Eshghi, Studies on photon buildup of the dysprosium doped lithium magnesium borate glasses system. Radiat. Phys. Eng. 2(1), 19-25 (2021). https://doi.org/10.22034/rpe.2021.249869.1023
|
[17] |
M. Eshghi, Investigation of radiation protection features of the TeO2-B2O3-Bi2O3-Na2O-NdCl3 glass systems. J. Mater. Sci.: Mater Elect. 31, 16479-16497 (2020)
|
[18] |
A. Bashir, G.B. Shaha, H.M. Azhar, Aurangzeb and Rizwan M., Gamma-ray shielding characteristics of flexible silicone tungsten composites. Appl. Radiat. Isot. 155, 108901 (2020)
|
[19] |
B. Ahmed, G.B. Shah, A.H. Malik, Aurangzeb and Rizwan M., Gamma-ray shielding characteristics of flexible silicone tungsten composites. Appl. Radiat. Isotopes 155, 108-115 (2020)
|
[20] |
N. Plangpleng, P. Charoenphun, D. Polpanich, K. Sakulkaew, N. Buasuwan, O. Onjun, K. Chuamsaamarkkee, Flexible gamma ray shielding based on natural Rubber/BaSO4 nanocomposites. Radiat. Phys. Chem. 199, 110311 (2022)
|
[21] |
H.S. Husain, N.A. Rasheed Naji, B.M. Mahmood, Investigation of gamma ray shielding by polymer composites. IOP Conf. Ser. Mater. Sci. Eng. 454, 012131 (2018). https://doi.org/10.1088/1757-899X/454/1/012131
|
[22] |
N.A. Kawady, M. Elkattan, M. Salah, A.A. Galhoum, Fabrication, characterization, and gamma ray shielding properties of PVA-based polymer nanocomposite. J. Mater. Sci. 57, 11046-11061 (2022)
|
[23] |
N. Hasegawa, H. Okamoto, M. Kato et al., Nylon 6/Namontmorillonite nanocomposites prepared by compounding nylon 6 with Na-montmorillonite slurry. Polymer 44(10), 2933-2937 (2003)
|
[24] |
S. Bose, T. Kuila, M.E. Uddin et al., In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51(25), 5921-5928 (2010)
|
[25] |
T. Ahmadi, A. Monshi, V. Mortazavi et al., Fabrication and characterization of polycaprolactone fumarate/gelatin-based nanocomposite incorporated with silicon and magnesium co-doped fluorapatite nanoparticles using electrospinning method. Mater. Sci. Eng. C 106, 110172 (2020)
|
[26] |
G.V. Salmoria, R.A. Paggi, A. Lago et al., Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym. Test. 30(6), 611-615 (2011)
|
[27] |
S. Yin, H. Wang, S. Wang, J. Zhang, Y. Zhu, Effect of B2O3 on the radiation shielding performance of telluride lead glass system. Crystals 12, 1-10 (2022)
|
[28] |
P. Limkitjaroenporn, W. Cheewasukhanonta, S. Kothan, J. Kaewkhao, Development of new high transparency Pb-free radiation shielding glass. Integ. Ferroelct. 214, 181-204 (2021)
|
[29] |
R. Nowotny, XMuDat: Photon Attenuation Data on PC; International, Atomic Energy Agency, Nuclear Data Services, Version 1.0.1 of August 1998; https://www-nds.iaea.org/repor ts/nds-195.htm.
|
[30] |
M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, and K. Olsen,“XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM)”, NIST, PML, Radiation Physics Division, Last Update to Data Content: November (2010).; https://physics.nist.gov/PhysRefData/Xcom.
|
[31] |
W.S. Snyder, et al. MIRD Pamphlet No. 5 Revised, Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J. Nucl. Med. (Suppl. 3), 5-52 (1969)
|
Citation: | H. Hosseini Sarteshnizi, M. Eshghi. Gamma ray and neutron shielding capacity of and dosimetry of composite compounds with diagnostic and therapeutic energies[J]. Radiation Detection Technology and Methods, 2024, 8(2): 1217-1228. DOI: 10.1007/s41605-023-00438-5 |
1. | M. F. Turhan, A. Tursucu, H. Oğul, et al. A study on radiation interaction parameters of boron carbide/zirconium boride composites. Applied Physics A, 2025, 131(2) DOI:10.1007/s00339-025-08245-z |