[1] |
. Q. Fazhi, H. Qiulan, H. Hao et al., The design of science data platform for high energy photon source. Front. Data Comput. 2(2), 40–58 (2020)
|
[2] |
. Libpng.org. PNG Specification: Filter Algorithms. 2021. Available online:http://www.libpng.org/pub/png/spec/1.2/PNG-Filters. html.
|
[3] |
. M. Rabbani, Book review: JPEG2000: image compression fundamentals, standards and practice. J. Electron. Imaging 11(2), 286–287 (2002)
|
[4] |
. M. Goyal, K. Tatwawadi, S. Chandak, et al. DeepZip: lossless data compression using recurrent neural networks, in Proceedings of the 2019 data compression conference (DCC). Piscataway: IEEE, pp. 575–575 (2019)
|
[5] |
. H. Yu, H. Mei, X. Xu, H. Jia, Research review of image compression algorithms based on deep learning. Comput. Eng. Appl. 56(15), 15–23 (2021)
|
[6] |
. F. Mentzer, E. Agustsson, M. Tschannen et al. Practical full resolution learned lossless image compression, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Pp. 10629–10638 (2019)
|
[7] |
. F. Mentzer, L.V. Gool, M. Tschannen, Learning better lossless compression using lossy compression, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 6638–6647 (2020)
|
[8] |
. J. Ho, E. Lohn, P. Abbeel, Compression with flows via local bitsback coding. Adv. Neural Inform. Process. Syst., 32 (2019)
|
[9] |
. S. Zhang, N. Kang, T. Ryder et al., iFlow: numerically invertible flows for efficient lossless compression via a uniform coder. Adv. Neural Inform. Process. Syst., 2021, 34 (2021)
|
[10] |
. S. Reed, A. Oord, N. Kalchbrenner et al. Parallel multiscale autoregressive density estimation, in International conference on machine learning. PMLR, pp. 2912–2921 (2017)
|
[11] |
. N. Khan, K. Iqbal, M.G. Martini, Time-aggregation-based lossless video encoding for neuromorphic vision sensor data. IEEE Internet Things J. 8(1), 596–609 (2020)
|
[12] |
. NVIDIA Corporation. Tesla V100 Data Sheet. [EB/OL]. (2017) [2021–10–13]. https:// www. nvidia. cn/ conte nt/ dam/ en- zz/ Solut ions/Data-Center/tesla-product-literature/Tesla-V100-PCIe-Produ ct- Brief. pdf.
|
[13] |
. Xilinx Corporation. (2020). A100 Accelerator Card Data Sheet. [EB/OL]. Retrieved October 14, 2021, from https:// docs. xilinx. com/r/ en- US/ ds962- u200- u250.
|
[14] |
. Intel Corporation. (2017). Xeon Silver 4116 Processor Specifications. [EB/OL]. Retrieved October 14, 2021, from https:// www. intel.com/content/www/us/en/products/sku/120481/intel-xeon-silver- 4116- proce ssor- 16- 5m- cache-2- 10- ghz/ speci ficat ions. html? wapkw= 4116.
|
[15] |
. F. Mentzer, E. Agustsson, M. Tschannen et al. Practical full resolution learned lossless image compression, in Proceedings of the 2019 IEEE/CVF conference on computer vision and pattern recognition. Piscataway: IEEE, pp. 10629–10638 (2019)
|
[16] |
. J.H. Zar, Spearman rank correlation. Encyclopedia of biostatistics, 7 (2005)
|
[17] |
. Z. Wang, A.C. Bovik, H.R. Sheikh et al., Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
|
[18] |
. V.V. Starovoytov, E.E. Eldarova, K.T. Iskakov, Comparative analysis of the SSIM index and the pearson coefficient as a criterion for image similarity. Eurasian J. Math. Comput. Appl. 8(1), 76–90 (2020)
|
[19] |
. S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv: 1803. 01271, (2018)
|
[20] |
. Y. Chen, H. Fan, B. Xu et al. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution, in Proceedings of the IEEE/CVF international conference on computer vision. pp. 3435–3444 (2019)
|
Citation: | Zhang Min-xing, Fu Shi-yuan, Gao Yu, et al. Fast lossless images compression for synchrotron radiation facility using deep learning and hybrid architecture[J]. Radiation Detection Technology and Methods, 2024, 8(4): 1693-1703. DOI: 10.1007/s41605-024-00490-9 |