[1] |
G. Pellegrini et al., Technology developments and first measurements of low gain avalanche detectors (LGAD) for high energy physics applications. Nucl. Instrum. Methods Phys. Res. A 765, 12-16 (2014)
|
[2] |
H.W. Sadrozinski et al., Ultrafast silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Acc. Spectrom. Detect. Assoc. Equip. 730, 226231 (2013)
|
[3] |
G.F. Dalla Betta et al., Design and TCAD simulation of double-sided pixelated low gain avalanche detectors. Nucl. Instrum. Meth. Phys. Res. A. 796, 154157 (2015)
|
[4] |
G. Giacomini et al., Fabrication and performance of AC-coupled LGADs. Jinst. 14, P09004 (2019)
|
[5] |
M. Mandurrino et al., Demonstration of 200-, 100-, and 50-μm pitch resistive Accoupled silicon detectors (RSD) with 100 fill-factor for 4D particle tracking. IEEE Electron Device Lett. 40, 17801783 (2019)
|
[6] |
G. Paternoster et al., Trench-Isolated low gain avalanche diodes (TI-LGADs). IEEE Electron Device Lett. 41, 884887 (2020)
|
[7] |
N. Cartiglia et al., LGAD designs for future particle trackers. Nucl. Instrum. Methods Phys. Res. Sect. A Acc. Spectrom. Detect. Assoc. Equip. 979, 164383 (2020)
|
[8] |
G. Giacomini et al., Fabrication of Silicon Sensors Based on Low-Gain Avalanche Diodes. Front. Phys. 9, 618621 (2021)
|
[9] |
Y. Zhao et al., A new approach to achieving high granularity for silicon diode detectors with impact ionization gain. IEEE Electron Device Lett. 2374, 012171 (2022)
|
[10] |
A. Apresyan et al., Buried Layer Low Gain Avalanche Diodes. Available online: https://indico.cern.ch/event/981823/contributions/4293564/attach- ments/2251204/3818882/BL-LGAD-TIPP.pdf Accessed on 10 Feb 2023
|
[11] |
W. Kewei et al., Design and testing of LGAD sensor with shallow carbon implantation. Nucl. Instrum. Methods Phys. Res. A 1046, 167697 (2023)
|
[12] |
Y. Tan et al., Radiation effects on NDL prototype LGAD sensors after proton irradiation. Nucl. Instrum. Methods A 1010, 165559 (2021)
|
[13] |
G. Pellegrini et al., Technology developments and first measurements of low gain avalanche detectors (LGAD) for high energy physics applications. Nucl. Instrum. Methods A 765, 12-16 (2014)
|
[14] |
Y. Fan et al., Radiation hardness of the low gain avalanche diodes developed by NDL and IHEP in China. Nucl. Instrum. Methods A 984, 164608 (2020)
|
[15] |
M. Li et al., The performance of IHEP-NDL LGAD sensors after neutron irradiation. JNST 16, P08053 (2021)
|
[16] |
ATLAS Collaboration. Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade. Technical report, CERN, Geneva, (2020)
|
[17] |
G. Kramberger et al., Radiation effects in low gain avalanche detectors after hadron irradiations. JINST 10, P07006 (2015)
|
[18] |
I. Pintilie et al., Analysis of electron traps at the 4H-SiC/SiO2 interface; influence by nitrogen implantation prior to wet oxidation. J. Appl. Phys. 108, 024503 (2010)
|
[19] |
P.J. Sellin et al., New materials for radiation hard semiconductor dectectors. Nucl. Instrum. Methods Phys. Res. A 557, 479-489 (2006)
|
[20] |
A. Harley-Trochimczyk et al., Low-power catalytic gas sensing using highly stable silicon carbide microheaters. J. Micromech. Microeng. 27, 045003 (2017)
|
[21] |
Z. Xiaodong et al., Characterizing the timing performance of a fast 4H-SiC detector with an am source. IEEE Trans. Nucl. Sci. 60, 2352-2356 (2013)
|
[22] |
Y. Tao et al., Time resolution of the 4H-SiC PIN detector. Front. Phys. 10, 718071 (2022)
|
[23] |
Z. Mei et al., Low Gain Avalanche Detectors with good time resolution developed by IHEP and IME for ATLAS HGTD project. Nucl. Instrum. Methods Phys. Res. A 1033, 166604 (2022)
|
[24] |
H.Y. Cha et al., Gate field emission induced breakdown in power SiC MESFETs. IEEE Electron Device Lett. 24, 571-573 (2003)
|
[25] |
K. Wu et al., Design and fabrication of low gain avalanche detectors (LGAD): a TCAD simulation study. J. Instrum. 15, C03008 (2020)
|
[26] |
R. Konishi et al., Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC. Mater. Sci. Eng. B 98, 286-293 (2003)
|
[27] |
F. Laariedh et al., Investigations on Ni-Ti-Al ohmic contacts obtained on P-type 4H-SiC. Mater. Sci. Forum 711, 169-173 (2012)
|
[28] |
Y. Hailong et al., Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-Si. J. Appl. Phys. 117, 025703 (2015)
|
[29] |
raser. PyPI. Available online: https://pypi.org/project/raser/ accessed on 27 Jan 2022
|
[30] |
J.E. Sanchez, DEVSIM: a TCAD semiconductor device simulator. J. Open Sour. Softw. 7(70), 3898 (2022)
|
[31] |
Y. Tan et al., Timing performance simulation for 3D 4H-SiC detector. Micromachines 13, 718071 (2022)
|
[32] |
S. Ramo, Currents induced by electron motion. Proc. IRE 27, 584585 (1939)
|
[33] |
N. Moulin, Tunnel junction I(V) characteristics: review and a new model for p-n homojunctions. J. Appl. Phys. 126, 033105 (2019)
|
[34] |
P.B. Klein et al., Lifetime-limiting defects in n- 4H-SiC epilayers. Appl. Phys. Lett. 88, 052110 (2006)
|
[35] |
C.G. Hemmingsson et al., Negative-U centers in 4H silicon carbide. Phys. Rev. B 58, R10119 (1998)
|
[36] |
C. Hemmingsson et al., Deep level defects in electron-irradiated SiC epitaxial layers. J. Appl. Phys. 81, 61556159 (1997)
|
[37] |
C. Yingxin et al., Influence of extended defects and oval shaped facet on the minority carrier lifetime distribution in as-grown 4H-SiC epilayers. Diamond Relat. Mater. 92, 25-31 (2018)
|
[38] |
M.S. Stefania et al., Electrical properties of extended defects in 4H-SiC investigated by photoinduced current measurements. Appl. Phys. Express 10, 036631 (2017)
|
[39] |
Y. Tan, Radiation resistant silicon and silicon carbide time resolution detector (University of Chinese Academy of Sciences, Beijing, Doctor, June2022)
|
Citation: | Keqi Wang, Tao Yang, Chenxi Fu, et al. Design and simulation of a novel 4H-SiC LGAD timing device[J]. Radiation Detection Technology and Methods, 2024, 8(2): 1140-1147. DOI: 10.1007/s41605-023-00431-y |